Internal Seminar

Internal Seminar Calendar

2024 – 2025

  • 27th March 2025 – 10h30 to 12h00 Michel Kern:
  • 20th March 2025 – 10h30 to 12h00 Rekha Khot:
  • 13th March 2025 – 10h30 to 12h00 Simon Lemaire:
  • 6th March 2025 – 10h30 to 12h00 Philip Herbert: Shape optimisation using Lipschitz functions. (abstract)
  • 6th February 2025 – 10h00 to 11h30 Martin Licht: Perspectives in structure-preserving numerical schemes. (abstract)
  • 30th January 2025 – 10h30 to 12h00 Divay Garg: Discontinuous Galerkin finite element methods for the control-constrained Dirichlet control problem governed by the diffusion equation. (abstract)
  • 23rd January 2025 – 10h30 to 12h00 Ibtissem Lannabi: Analysis of spurious oscillations problem of Finite Volume Methods for low Mach number flows in fluid mechanics. (abstract)
  • 13th January 2025 – 10h30 to 12h00 Peter Moritz von Schultzendorff: Adaptive homotopy continuation for relative permeability models in reservoir simulation. (abstract)
  • 17th December 2024 – 11h00 to 12h00 Ani Miraçi: Iterative solvers and optimal complexity of adaptive finite element methods. (abstract)
  • 12th December 2024 – 11h00 to 12h00 Lina Zhao: A parameter-free HDG method for linear elasticity with strongly symmetric stress. (abstract)
  • 21st November 2024 – 11h00 to 12h00 Guillaume Bonnet: 𝐻² conforming virtual element discretization of nondivergence form elliptic equations. (abstract)
  • 17 October 2024 – 11h00 to 12h00 Gregor Gantner: Space-time FEM-BEM couplings for parabolic transmission problems. (abstract)
  • 15 October 2024 – 11h00 to 12h00 André Harnist: Robust augmented energy a posteriori estimates for Lipschitz and strongly monotone elliptic problems. (abstract)
  • 10 October 2024 – 11h00 to 12h00 Jørgen S. Dokken: A view into the development of the FEniCS project over two decades. (abstract)
  • 2nd October 2024 – 11h00 to 12h00 Weifeng Qiu: Numerical analysis for incompressible MHD and Maxwell’s transmission eigenvalues and Moving interface without thickness. (abstract)

2023 – 2024

  • 10 September 2024 – 11h00 to 12h00 Carsten Carstensen: Adaptive computation of fourth-order problems. (abstract)
  • 25 April 2024 – 11h00 to 12h00 Martin Werner Licht: Computable reliable bounds for Poincaré–Friedrichs constants via Čech–de-Rham complexes. (abstract)
  • 4 April 2024 – 11h00 to 12h00 Roland Maier: A localized orthogonal decomposition strategy for hybrid discontinuous Galerkin methods. (abstract)
  • 2 April 2024 – 14h00 to 15h00 Andreas Rupp: Homogeneous multigrid for hybrid discretizations: application to HHO methods. (abstract)
  • 18 January 2024 – 14h00 to 15h00 Zoubida Mghazli: Modeling some biological phenomena via the porous media approach. (abstract)
  • 23 November 2023 – 11h00 to 12h00 Olivier Hénot: Computer-assisted proofs of radial solutions of elliptic systems on R^d. (abstract)
  • 16 November 2023 – 17h00 to 18h00 Maxime Theillard: A Volume-Preserving Reference Map Method for the Level Set Representation. (abstract)
  • 13 November 2023 – 11h00 to 12h00 Charles Parker: Implementing $H^2$-conforming finite elements without enforcing $C^1$-continuity. (abstract)
  • 09 November 2023 – 11h00 to 12h00 Maxime Breden: Computer-assisted proofs for nonlinear equations: how to turn a numerical simulation into a theorem. (abstract)
  • 10 September 2024 – 11h00 to 12h00 Carsten Carstensen: Adaptive computation of fourth-order problems. (abstract)

2022 – 2023

  • 25 May 2023 – 11h00 to 12h00 Martin Vohralík: A posteriori error estimates robust with respect to nonlinearities and final time. (abstract)
  • 11 May 2023 – 11h00 to 12h00 Konstantin Brenner: On the preconditioned Newton’s method for Richards’ equation. (abstract)
  • 4 May 2023 – 11h00 to 12h00 Ludmil Zikatanov: High order exponential fitting discretizations for convection diffusion problems. (abstract)
  • 23 March 2023 – 11h00 to 12h00 Marien Hanot: Polytopal discretization of advanced differential complexes.(abstract)
  • 9 February 2023 – 11h00 to 12h00 Roland Maier: Semi-explicit time discretization schemes for elliptic-parabolic problems. (abstract)
  • 2 February 2023 – 11h00 to 12h00 Simon Legrand: Parameter studies automation with Prune_rs. (abstract)
  • 28 November 2022 – 11h00 to 12h00 Xuefeng LiuGuaranteed eigenvalue/eigenfunction computation and its application to shape optimization problems. (abstract)
  • 17 November 2022 – 11h00 to 12h00 Fabio ViciniFlow simulations on porous fractured media: a small numerical overview from my perspective. (abstract)
  • 20 October 2022 – 10h00 to 11h00 Iuliu Sorin PopNon-equilibrium models for flow in porous media. (abstract)
  • 06 October 2022 – 15h00 to 16h00 Rekha KhotNonconforming virtual elements for the biharmonic equation with Morley degrees of freedom on polygonal meshes. (abstract)

2021 – 2022

  • 21 September 2022 – 15h00 to 16h00 Alexandre IMPERIALENumerical methods for time domain wave propagation problems applied to ultrasonic testing modelling. (abstract)
  • 16 June 2022 – 11h30 to 12h30 Cherif AmroucheElliptic Problems in Lipschitz and in $C^{1,1}$ Domains. (abstract)
  • 13 June 2022 – 11h00 to 12h00 Jean-Luc GuermondInvariant-domain preserving IMEX time stepping methods. (abstract)
  • 5 May 2022 – 11h00 to 12h00 Daniel Zegarra VasquezSimulation d’écoulements monophasiques en milieux poreux fracturés par la méthode des éléments finis mixtes hybrides. (abstract)
  • 19 April 2022 – 14h00 to 15h00 Christos XenophontosFinite Element approximation of singularly perturbed eigenvalue problems. (abstract)
  • 14 April 2022 – 11h00 to 12h00: Idrissa NiakhStable model reduction for linear variational inequalities with parameter-dependent constraints. (abstract)
  • 7 April 2022 – 17h00 to 18h00: Christoph LehrenfeldEmbedded Trefftz Discontinuous Galerkin methods. (abstract)
  • 24 March 2022 – 11h00 to 12h00: Miloslav Vlasak: A posteriori error estimates for discontinuous Galerkin method. (abstract)
  • 10 March 2022 – 11h00 to 12h00: Ruma Maity: Parameter dependent finite element analysis for ferronematics solutions. (abstract)
  • 3 February 2022 – 11h00 to 12h00: Pierre Matalon: An h-multigrid method for Hybrid High-Order discretizations of elliptic equations. (abstract)
  • 27 January 2022 – 11h00 to 12h00: Frédéric LebonOn the modeling of nonlinear imperfect solid/solid interfaces by asymptotic techniques. (abstract)
  • 20 January 2022 – 11h00 to 12h00: Isabelle RamièreAutomatic multigrid adaptive mesh refinement with controlled accuracy for quasi-static nonlinear solid mechanics. (abstract)
  • 13 January 2022 – 11h00 to 12h00: Koondanibha Mitra: A posteriori estimates for nonlinear degenerate parabolic and elliptic equations. (abstract)
  • 10 December 2021 – 11h00 to 12h00: Gregor GantnerApplications of a space-time first-order system least-squares formulation for parabolic PDEs. (abstract)
  • 25 November 2021 – 11h00 to 12h00: Pierre GosseletAsynchronous Global/Local coupling. (abstract)
  • 24 November 2021 – 10h30 to 11h30: Grégory EtangsaleA primal hybridizable discontinuous Galerkin method for modelling flows in fractured porous media. (abstract)

2020 – 2021

  • 06 September 2021 – 15h00 to 16h00: Rolf Stenberg: Nitsche’s Method for Elastic Contact Problems. (abstract)
  • 17 June 2021 – 11h00 to 12h00: Elyes Ahmed: Adaptive fully-implicit solvers and a posteriori error control for multiphase flow with wells. (abstract)
  • 3 June 2021 – 11h00 to 12h00: Oliver Sutton: High order, mesh-based multigroup discrete ordinates schemes for the linear Boltzmann transport problem. (abstract)
  • 29 April 2021 – 11h00 to 12h00: Lorenzo Mascotto: Enriched nonconforming virtual element methods (abstract)
  • 1 April 2021 – 11h00 to 12h00: André Harnist : Improved error estimates for Hybrid High-Order discretizations of Leray–Lions problems (abstract)
  • 11 March 2021 – 15h00 to 16h00: Omar Duran : Explicit and implicit hybrid high-order methods for the wave equation in time regime (abstract)
  • 25 February 2021 – 14h00 to 15h00: Buyang Li : A bounded numerical solution with a small mesh size implies existence of a smooth solution to the time-dependent Navier–Stokes equations (abstract)
  • 18 February 2021 – 11h00 to 12h00: Roland Maier :  Multiscale scattering in nonlinear Kerr-type media (abstract)
  • 10 December 2020 – 16h00 to 17h00: Ani Miraçi : A-posteriori-steered and adaptive p-robust multigrid solvers (abstract)
  • 9 December 2020 – 16h00 to 17h00: Riccardo Milani : Compatible Discrete Operator schemes for the unsteady incompressible Navier–Stokes equations (abstract)
  • 26 November 2020 – 16h00 to 17h00: Koondanibha Mitra : A posteriori error bounds for the Richards equation (abstract)
  • 19 November 2020 – 11h00 to 12h00: Joëlle Ferzly : Semismooth and smoothing Newton methods for nonlinear systems with complementarity constraints: adaptivity and inexact resolution (abstract)
  • 5 November 2020 – 11h00 to 12h00: Zhaonan Dong : On a posteriori error estimates for non-conforming Galerkin methods (abstract)
  • 22 October 2020 – 11h00 to 12h00: Théophile Chaumont-Frelet : A posteriori error estimates for Maxwell’s equations based on flux quasi-equilibration (abstract)
  • 15 October 2020 – 11h00 to 12h00: Florent Hédin : A hybrid high-order (HHO) method with non-matching meshes in discrete fracture networks (abstract)

2019 – 2020

  • 16 March 2020 – 15h00 to 16h00: Bochra Mejri : Topological sensitivity analysis for identification of voids under Navier’s boundary conditions in linear elasticity (abstract)
  • 25 February 2020 – 15h00 to 16h00: Jakub Both : Robust iterative solvers for thermo-poro-visco-elasticity via gradient flows (abstract)
  • 16 October 2019 – 14h00 to 15h00: Nicolas Pignet : Hybrid High-Order method for nonlinear solid mechanics (abstract)
  • 27 September 2019 – 15h00 to 16h00: Ivan Yotov : A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media (abstract)
  • 5 September 2019 – 15h00 to 16h00: Koondi Mitra : A fast and stable linear iterative scheme for nonlinear parabolic problems (abstract)

2018 – 2019

  • 11 July 2019 – 11h00 to 12h00: Jose Fonseca : Towards scalable parallel adaptive simulations with ParFlow (abstract)
  • 6 June 2019 – 11h00 to 12h00: Quanling Deng : High-order generalized-alpha methods and splitting schemes (abstract)
  • 12 April 2019 – 14h30 to 15h30: Menel Rahrah : Mathematical modelling of fast, high volume infiltration in poroelastic media using finite elements (abstract)
  • 18 March 2019 – 14h to 15h: Patrik Daniel : Adaptive hp-finite elements with guaranteed error contraction and inexact multilevel solvers (abstract)
  • 14 February 2019 – 15h to 16h: Thibault Faney, Soleiman Yousef : Accélération d’un simulateur d’équilibres thermodynamiques par apprentissage automatique (abstract)
  • 7 February 2019 – 11h to 12h: Gregor Gantner : Optimal adaptivity for isogeometric finite and boundary element methods (abstract)
  • 31 January 2019 – 14h30 to 15h30: Camilla Fiorini : Sensitivity analysis for hyperbolic PDEs systems with discontinuous solution: the case of the Euler Equations. (abstract)
  • 9 January 2019 – 11h to 12h: Zhaonan Dong : hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes (abstract)
  • 13 December 2018 – 11h to 12h: Maxime Breden : An introduction to a posteriori validation techniques, illustrated on the Navier-Stokes equations (abstract)
  • 5 December 2018 – 11h00 to 12h00: Amina Benaceur : Model reduction for nonlinear thermics and mechanics (abstract)

2017 – 2018

  • 16 April 2018 – 15h to 16h: Simon Lemaire : An optimization-based method for the numerical approximation of sign-changing PDEs (abstract)
  • 20 Febraury 2018 – 15h to 16h: Thirupathi Gudi : An energy space based approach for the finite element approximation of the Dirichlet boundary control problem (abstract)
  • 15 Febraury 2018 – 14h to 15h: Franz Chouly : About some a posteriori error estimates for small strain elasticity (abstract)
  • 30 November 2017 – 14h to 15h: Sébastien Furic : Construction & Simulation of System-Level Physical Models (abstract)
  • 2 November 2017 – 11h to 12h: Hend Benameur: Identification of parameters, fractures ans wells in porous media (abstract)
  • 10 October 2017 – 11h to 12h: Peter Minev: Recent splitting schemes for the incompressible Navier-Stokes equations (abstract)
  • 18 September 2017 – 13h to 14h: Théophile Chaumont: High order finite element methods for the Helmholtz equation in highly heterogeneous media (abstract)

2016 – 2017

  • 29 June 2017 – 15h to 16h: Gouranga Mallik: A priori and a posteriori error control for the von Karman equations (abstract)
  • 22 June 2017 – 15h to 16h: Valentine Rey: Goal-oriented error control within non-overlapping domain decomposition methods to solve elliptic problems (abstract)
  • 15 June 2017 – 15h to 16h:
  • 6 June 2017 – 11h to 12h: Ivan Yotov: Coupled multipoint flux and multipoint stress mixed finite element methods for poroelasticity (abstract)
  • 1 June 2017 – 10h to 12h:
    • Joscha GedickeAn adaptive finite element method for two-dimensional Maxwell’s equations (abstract)
    • Martin EigelAdaptive stochastic FE for explicit Bayesian inversion with hierarchical tensor representations (abstract)
    • Quang Duc Bui: Coupled Parareal-Schwarz Waveform relaxation method for advection reaction diffusion equation in one dimension (abstract)
  • 16 May 2017 – 15h to 16h: Quanling Deng: Dispersion Optimized Quadratures for Isogeometric Analysis (abstract)
  • 11 May 2017 – 15h to 16h: Sarah Ali Hassan: A posteriori error estimates and stopping criteria for solvers using domain decomposition methods and with local time stepping (abstract)
  • 13 Apr. 2017 – 15h to 16h: Janelle Hammond: A non intrusive reduced basis data assimilation method and its application to outdoor air quality models (abstract)
  • 30 Mar. 2017 – 10h to 11h: Mohammad Zakerzadeh: Analysis of space-time discontinuous Galerkin scheme for hyperbolic and viscous conservation laws (abstract)
  • 23 Mar. 2017 – 15h to 16h: Karol Cascavita: Discontinuous Skeletal methods for yield fluids (abstract)
  • 16 Mar. 2017 – 15h to 16h: Thomas Boiveau: Approximation of parabolic equations by space-time tensor methods (abstract)
  • 9 Mar. 2017 – 15h to 16h: Ludovic Chamoin: Multiscale computations with MsFEM: a posteriori error estimation, adaptive strategy, and coupling with model reduction (abstract)
  • 2 Mar. 2017 – 15h to 16h: Matteo Cicuttin: Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. (abstract)
  • 23 Feb. 2017
    10h to 10h45 : Lars Diening: Linearization of the p-Poisson equation (abstract)
    10h45 to 11h30 : Christian Kreuzer: Quasi-optimality of discontinuous Galerkin methods for parabolic problems (abstract)
  • 26 Jan. 2017 – 15h to 16h: Amina BenaceurAn improved reduced basis method for non-linear heat transfer (abstract)
  • 19 Jan. 2017 – 15h to 16h: Laurent Monasse: A 3D conservative coupling between a compressible flow and a fragmenting structure (abstract)
  • 5 Jan. 2017 – 15h to 16h: Agnieszka Miedlar: Moving eigenvalues and eigenvectors by simple perturbations (abstract)
  • 8 Dec. 2016 – 15h to 16h: Luca Formaggia: Hybrid dimensional Darcy flow in fractured porous media, some recent results on mimetic discretization (abstract)
  • 22 Sept. 2016 – 15h to 16h: Paola AntoniettiFast solution techniques for high order Discontinuous Galerkin methods (abstract)

2015 – 2016

  • 29 Oct. 2015 – 15h to 16h: Sarah Ali HassanA posteriori error estimates for domain decomposition methods (abstract)
  • 05 Nov. 2015 – 16h to 17h: Iain SmearsRobust and efficient preconditioners for the discontinuous Galerkin time-stepping method (abstract)
  • 12 Nov. 2015 -16h to 17h: Elyes Ahmed: Space-time domain decomposition method for two-phase flow equations (abstract)
  • 19 Nov. 2015 – 16h to 17h: Géraldine PichotGeneration algorithms of stationary Gaussian random fields (abstract)
  • 26 Nov. 2015-16h to 17h: Jérôme JaffréDiscrete reduced models for flow in porous media with fractures and barriers (abstract)
  • 03 Dec. 2015 – 16h to 17h: François Clément: Safe and Correct Programming for Scientific Computing (abstract)
  • 10 Dec. 2015 – 16h to 17h: Nabil Birgle: Composite Method on Polygonal Meshes (abstract)11 Feb. 2016: Michel
  • Kern: Reactive transport in porous media: Formulations and numerical methods
  • 25 Feb. 2016: Martin Vohralík
  • 3 March 2016: François Clément: Safe and Correct Programming for Scientific Computing pt II

Shape optimisation using Lipschitz functions

Philip Herbert: Thursday, 06th March 2025 at 10:30 Abstract: In this talk, we discuss a novel method in PDE constrained shape optimisation.  While it is known that many shape optimisation problems have a solution, finding the solution, or an approximation of the solution, may prove non-trivial.  A typical approach to minimisation is to use a first order method; this raises questions when handling shapes – what is a shape derivative, where does it live?  It happens to be convenient to define the derivatives as linear functionals on $W^{1,\infty}$.  We present an analysis of this in a discrete setting along with the existence of directions of steepest descent.  Several numerical experiments will be considered and extensions discussed.

Continue reading

Perspectives in structure-preserving numerical schemes

Martin Licht: Thursday, 06th February 2025 at 10:00 Abstract: Structure-preserving numerical methods have had a transformative impact on the numerical analysis of partial differential equations, reproducing the fundamental mathematical structures of numerous partial differential equations exactly at the numerical level. This talk gives an introduction and overview of structure-preserving finite element methods via “finite element exterior calculus” (FEEC) and explores some new directions in the field. FEEC is a comprehensive framework for mixed finite element methods, at the heart of which are finite element differential complexes. This comprehensive theory of mixed finite element methods connects geometry, topology, and classical numerical analysis. We highlight recent research developments, including mixed boundary conditions in FEEC and finite element methods over manifolds, and discuss some future directions in numerical electromagnetism, elasticity, and fluid dynamics.

Continue reading

Discontinuous Galerkin finite element methods for the control constrained Dirichlet control problem governed by the diffusion equation.

Divay Garg: Thursday, 30th January 2025 at 10:30 Abstract: We utilize a unified discontinuous Galerkin approach to approximate the control constrained Dirichlet boundary optimal control problem using finite element method over simplicial triangulation. The continuous optimality system obtained from this method simplifies the control constraints into a simplified Signorini type problem, which is then coupled with boundary value problems for the state and co-state variables. The symmetric property of the discrete bilinear forms is required in order to derive the discrete optimality system. The main focus is to derive residual based a posteriori error estimates in the energy norm, where we address the reliability and efficiency of the proposed a posteriori error estimator. The suitable construction of auxiliary problems, continuous and discrete Lagrange multipliers, and intermediate operators are crucial in developing a posteriori error analysis. We have also established optimal a priori error estimates in the energy norm for all the optimal variables (state, co-state, and control) under the appropriate regularity assumptions. Theoretical findings are confirmed and illustrated through numerical results on both uniform and adaptive meshes.

Continue reading

Adaptive homotopy continuation for relative permeability models in reservoir simulation

Peter Moritz von Schultzendorff: Monday, 13th January 2025 at 10:30 Accurate modeling of physical processes requires an appropriate selection of constitutive laws. In physics-based reservoir simulation, constitutive laws, e.g., relative permeabilities are often chosen to be, mathematically speaking, simple functions, not necessarily adhering to physics. The paradigm of hybrid modeling allows the integration of machine learned (ML) constitutive laws. Trained on lab, field, and fine-scale simulation data, ML models represent the underlying physics with high fidelity.Strong nonlinearities in classic (i.e., non-ML) relative permeability have been identified as one of the main sources for convergence issues of nonlinear solvers in reservoir simulation. This issue grows in severance for ML relative permeability models, as their high fidelity to real-world data compromises the mathematically desirable properties of simpler models.In this work, we employ the homotopy continuation (HC) method to recover nonlinear solver robustness for classic relative permeability models. The HC method improves nonlinear solver robustness by first solving a problem with simpler relative permeabilities and then iteratively traversing a solution curve towards the original, more complex problem. To efficiently trace the solution curve, we leverage a posteriori error estimates to design an adaptive HC algorithm that minimizes the total number of solver iterations.We show the current status of our work, both on the theoretical and implementation side, and give an outlook into the application to ML relative permeabilities.

Continue reading

Analysis of spurious oscillations problem of Finite Volume Methods for low Mach number flows in fluid mechanics

Ibtissem Lannabi: Thursday, 23rd January 2025 at 11:00 This work is devoted to the numerical simulation of low Mach number flows, modeled by the compressible Euler system. Commonly used solvers for discretizing this model are Godunov-type schemes. These schemes exhibit poor performance at low Mach number in terms of efficiency and accuracy.Indeed, when the Mach number tends to zero, material and acoustic waves propagate on two distinct time scales, making temporal discretization challenging.In particular, an explicit scheme is stable under a CFL condition, which depends on the speed of sound, making this criterion very restrictive.Regarding the accuracy problem observed with quadrangular grids, it arises from the fact that the discrete solution fails to converge to the incompressible solution as the Mach number tends to zero.To overcome this accuracy problem, many fixes have been developed and consist in modifying the numerical diffusion of the original scheme. These corrections improve the accuracy of compressible schemes as the Mach number goes to zero. Unfortunately they introduce other problems, such as the appearance of numerical oscillations (checkerboard modes on a Cartesian grid) in the numerical solution, or the damping of acoustic waves as the Mach number goes to zero. Efficiency is also compromised as these schemes are stable under a more restrictive CFL condition compared to the original scheme. In this talk, we propose to study the phenomenon of oscillations that plagues some of the fixes proposed in the literature. We focus on Roe-type fixes, in particular those that reduce the numerical diffusion on the jump of the normal velocity.The asymptotic analysis of these schemes leads to a discretization of a wave system in which the pressure gradient is centered. To better understand the phenomenon, we focus on the linear wave system.We then show that this fix is not TVD, unlike the Godunov scheme,…

Continue reading