04 March – Omar Duran: Explicit and implicit hybrid high-order methods for the wave equation in time regime

Omar Duran: Thursday 04 March at 15:00 There are two main approaches to derive a fully discrete method for solving the second-order acoustic wave equation in the time regime. One is to discretize directly the second-order time derivative and the Laplacian operator in space. The other approach is to transform the second-order equation into a first-order hyperbolic system. Firstly, we consider the time second-order form. We devise, analyze the energy-conservation properties, and evaluate numerically a hybrid high-order (HHO) scheme for the space discretization combined with a Newmark-like time-marching scheme. The HHO method uses as discrete unknowns cell- and face-based polynomials of some order 0 ≤ k, yielding for steady problems optimal convergence of order (k + 1) in the energy norm [1]. Secondly, inspired by ideas presented in [2] for hybridizable discontinuous Galerkin (HDG) method and the link between HDG and HHO methods in the steady case [3], first-order explicit or implicit time-marching schemes combined with the HHO method for space discretization are considered. We discuss the selection of the stabilization term and energy conservation and present numerical examples. Extension to the unfitted meshes is contemplated for the acoustic wave equation. We observe that the unfitted approach combined with local cell agglomeration leads to a comparable CFL condition as when using fitted meshes [4]. [1] D.A. Di Pietro, A. Ern, and S. Lemaire. An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Computational Methods in Applied Mathematics. 14 (2014) 461-472. [2] M. Stanglmeier, N.C. Nguyen, J. Peraire, and B. Cockburn. An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Computer Methods in Applied Mechanics and Engineering, 300:748–769, March 2016. [3] B. Cockburn, D. A. Di Pietro, and A. Ern. Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: Mathematical Modelling and…

Continue reading

25 February – Buyang Li : A bounded numerical solution with a small mesh size implies existence of a smooth solution to the time-dependent Navier–Stokes equations

Buyang Li: Thursday 25 February at 14:00 We prove that for a given smooth initial value, if one finite element solution of the three-dimensional time-dependent Navier–Stokes equations is bounded by $M$ when some sufficiently small step size $\tau < \tau _M$ and mesh size $h < h_M$ are used, then the true solution of the Navier–Stokes equations with this given initial value must be smooth and unique, and is successfully approximated by the numerical solution.

Continue reading

18 February – Roland Maier : Multiscale scattering in nonlinear Kerr-type media

18 February – Roland Maier Wave propagation in heterogeneous and nonlinear media has arisen growing interest in the last years since corresponding materials can lead to unusual and interesting effects and therefore come with a wide range of applications. An important example of such materials is Kerr-type media, where the intensity of a wave directly influences the refractive index. In the time-harmonic regime, this effect can be modeled with a nonlinear Helmholtz equation. If underlying material coefficients are highly oscillatory on a microscopic scale, the numerical approximation of corresponding solutions can be a delicate task. In this talk, a multiscale technique is presented that allows one to deal with microscopic coefficients in a nonlinear Helmholtz equation without the need for global fine-scale computations. The method is based on an iterative and adaptive construction of appropriate multiscale spaces based on the multiscale method known as Localized Orthogonal Decomposition, which works under minimal structural assumptions. This talk is based on joint work with Barbara Verfürth (KIT, Karlsruhe)  

Continue reading

December 10 – Ani Miraçi: A-posteriori-steered and adaptive p-robust multigrid solvers

Ani Miraçi: Thursday 10 December at 16:00 via this link with meeting ID: 950 9381 2553 and code: 077683 We consider systems of linear algebraic equations arising from discretizations of second-order elliptic partial differential equations using finite elements of arbitrary polynomial degree. First, we propose an a posteriori estimator of the algebraic error, the construction of which is linked to that of a multigrid solver without pre-smoothing and a single post-smoothing step by overlapping Schwarz methods (block-Jacobi). We prove the following results and their equivalence: the solver contracts the algebraic error independently of the polynomial degree (p-robustness); the estimator represents a two-sided p-robust bound of the algebraic error. Next, we introduce optimal step-sizes which minimize the error at each level. This makes it possible to have an explicit Pythagorean formula for the algebraic error; this in turn serves as the foundation for a simple and efficient adaptive strategy allowing to choose the number of post-smoothing steps per level. We also introduce an adaptive local smoothing strategy thanks to our efficient and localized estimator of the algebraic error by levels/patches of elements. Patches contributing more than a user-prescribed percentage to the overall error are marked via a bulk-chasing criterion. Each iteration is composed of a non-adaptive V-cycle and an adaptive V-cycle which uses local smoothing only in the marked patches. These V-cycles contract the algebraic error in a p-robust fashion. Finally, we also extend some the above results to a mixed finite elements setting in two space dimensions. A variety of numerical tests is presented to confirm our theoretical results and to illustrate the advantages of our approaches.

Continue reading

December 9 – Riccardo Milani: Compatible Discrete Operator schemes for the unsteady incompressible Navier–Stokes equations

Riccardo Milani: Wednesday 9 December at 16:00 via this link with meeting ID: 996 3774 0482 and code: 190673 We develop face-based Compatible Discrete Operator (CDO-Fb) schemes for the unsteady, incompressible Stokes and Navier–Stokes equations. We introduce operators discretizing the gradient, the divergence, and the convection term. It is proved that the discrete divergence operator allows one to recover a discrete inf-sup condition. Moreover, the discrete convection operator is dissipative, a paramount property for the energy balance. The scheme is first tested in the steady case on general and deformed meshes in order to highlight the flexibility and the robustness of the CDO-Fb discretization. The focus is then moved onto the time-stepping techniques. In particular, we analyze the classical monolithic approach, consisting in solving saddle-point problems, and the Artificial Compressibility (AC) method, which allows one to avoid such saddle-point systems at the cost of relaxing the mass balance. Three classic techniques for the treatment of the convection term are investigated: Picard iterations, the linearized convection and the explicit convection. Numerical results stemming from first-order and then from second-order time-schemes show that the AC method is an accurate and efficient alternative to the classical monolithic approach.

Continue reading

November 26 – Koondanibha Mitra: A posteriori error bounds for the Richards equation

Koondanibha Mitra: Thursday 26 November at 16:00 via this link Richards equation is commonly used to model the flow of water and air through the soil, and serves as a gateway equation for multiphase flow through porous domains. It is a nonlinear advection-reaction-diffusion equation that exhibits both elliptic-parabolic and hyperbolic-parabolic kind of degeneracies. In this study, we provide fully computable, locally space-time efficient, and reliable a posteriori error bounds for numerical solutions of the fully degenerate Richards equation. This is achieved in a variation of the $ H^1(H^{-1})\cap L^2(L^2) \cap L^2(H^1)$ norm characterized by the minimum regularity inherited by the exact solutions. For showing global reliability, a non-local in time error estimate is derived individually for the $H^1(H^{-1})$, $L^2(L^2)$ and the $L^2(H^1)$ error components with a maximum principle and a degeneracy estimator being used for the last one. Local and global space-time efficient error bounds are obtained, and error contributors such as flux and time non-conformity, quadrature, linearisation, data oscillation, are identified and separated. The estimates hold also in space-time adaptive settings. The predictions are verified numerically and it is shown that the estimators correctly identify the errors up to a factor in the order of unity.

Continue reading

November 19 – Joëlle Ferzly: Semismooth and smoothing Newton methods for nonlinear systems with complementarity constraints: adaptivity and inexact resolution

Joëlle Ferzly: Thursday 19 November at 11:00 via zoom (meeting ID: 966 1837 4193 and code: zFG6Lb) We are interested in nonlinear algebraic systems with complementarity constraints stemming from numerical discretizations of nonlinear complementarity problems. The particularity is that they are nondifferentiable, so that classical linearization schemes like the Newton method cannot be applied directly. To approximate the solution of such nonlinear systems, an iterative linearization algorithm like the semismooth Newton-min can be used. We consider smoothing methods, where the nondifferentiable nonlinearity is smoothed. In particular, a smoothing Newton algorithm based on the smoothed min or Fischer-Burmeister function, and a smoothing interior-point algorithm. The corresponding linear system is approximately solved using any iterative linear algebraic solver. We derive an a posteriori error estimate that allows to distinguish the smoothing, linearization, and algebraic error components. These ingredients are then used to formulate adaptive criteria for stopping the linear and nonlinear solver. This leads us to propose an adaptive algorithm ensuring important savings in terms of the number of cumulated algebraic iterations. We apply our analysis to the system of variational inequalities describing the contact between two membranes. We will show that the proposed algorithm, in combination with the GMRES algebraic solver, is promising in comparison with other methods.

Continue reading

November 5 – Zhaonan Dong: On a posteriori error estimates for non-conforming Galerkin methods

Zhaonan Dong: Thursday 5 November at 11:00 via zoom (meeting ID: 961 6781 3449 and code: g4q44P) Non-conforming Galerkin methods are very popular for the stable and accurate numerical approximation of challenging PDE problems. The term “non-conforming” refers to approximations that do not respect the continuity properties of the PDE solutions. Nonetheless, to arrive at rigorous error control via a posteriori error estimates, non-conforming methods pose a number of challenges. I will present a novel methodology for proving a posteriori error estimates for the “extreme” class (in terms of non-conformity) of discontinuous Galerkin methods in various settings. For instance, we prove a posteriori error estimates for the recent family of Galerkin methods employing the general shaped polygonal and polyhedral elements, solving an open problem in the literature. Furthermore, with the help this new idea, we prove new a posteriori error bounds for various $hp$-version non-conforming FEMs for fourth-order elliptic problems; these results also solve a number of open questions in the literature, yet they arise relatively easily within the new reconstruction framework of proof. These results open a door to design new reliable adaptive algorithms for solving the problems in thin plate theories of elasticity, phase-field modeling and mathematical biology.

Continue reading

October 22 – Théophile Chaumont-Frelet: A posteriori error estimates for Maxwell’s equations based on flux quasi-equilibration

Théophile Chaumont-Frelet: Thursday 22 October at 11:00, A415, Inria Paris. I will present of a novel a posteriori estimator for finite element discretizations of Maxwell’s equations. The construction hinges on a modification of the flux equilibration technique, called quasi-equilibration. The resulting estimator is inexpensive to compute and polynomial-degree-robust, which means that the reliability and efficiency constants are independent of the discretization order. I will first describe the standard flux equilibration technique for the simpler case of Poisson’s problem, and explain why it is hard to directly apply this idea to Maxwell’s equations. Then, I will present in detail the derivation of the proposed estimator through the quasi-equilibration procedure. Numerical examples highlighting the key features of the estimator will be presented, and followed by concluding remarks.

Continue reading

October 15 – Florent Hédin: A hybrid high-order (HHO) method with non-matching meshes in discrete fracture networks

Florent Hédin: Thursday 15 October at 11:00, Gilles Kahn 1, Inria Paris. We are interested in efficient numerical methods for solving flow in large scale fractured networks. Fractures are ubiquitous in the subsurface. Flow in fractured rocks are of interest for many applications (water resources, geothermal applications, oil/gas extraction, nuclear waste disposal). The networks are modeled as Discrete Fractures Networks (DFN). The main challenges of such flow simulations are the uncertainty regarding the geometry and properties of the subsurface, the observed wide range of fractures length (from centimeters to kilometers) and the number of fractures (from thousands to millions of fractures). In natural rocks, flow is highly channelled, which motivates to mesh finely the fractures that carry most of the flow, and coarsely the remaining fractures. But independent triangular mesh generation from one fracture to another yields non matching triangles at the intersections between fractures. Mortar methods have been developed in the past years to deal with non matching grids. In this presentation, we propose an alternative based on the recent HHO method which naturally handles general meshes (polygons/polyhedral) and face polynomials of order k ≥ 0. Combined with refining/coarsening strategies, we will show how the HHO method allows to save computational time in DFN flow simulations.

Continue reading