Internal Seminar

Internal Seminar Calendar

2023 – 2024

2022 – 2023

  • 25 May 2023 – 11h00 to 12h00 Martin Vohralík: A posteriori error estimates robust with respect to nonlinearities and final time. (abstract)
  • 11 May 2023 – 11h00 to 12h00 Konstantin Brenner: On the preconditioned Newton’s method for Richards’ equation. (abstract)
  • 4 May 2023 – 11h00 to 12h00 Ludmil Zikatanov: High order exponential fitting discretizations for convection diffusion problems. (abstract)
  • 23 March 2023 – 11h00 to 12h00 Marien Hanot: Polytopal discretization of advanced differential complexes.(abstract)
  • 9 February 2023 – 11h00 to 12h00 Roland Maier: Semi-explicit time discretization schemes for elliptic-parabolic problems. (abstract)
  • 2 February 2023 – 11h00 to 12h00 Simon Legrand: Parameter studies automation with Prune_rs. (abstract)
  • 28 November 2022 – 11h00 to 12h00 Xuefeng LiuGuaranteed eigenvalue/eigenfunction computation and its application to shape optimization problems. (abstract)
  • 17 November 2022 – 11h00 to 12h00 Fabio ViciniFlow simulations on porous fractured media: a small numerical overview from my perspective. (abstract)
  • 20 October 2022 – 10h00 to 11h00 Iuliu Sorin PopNon-equilibrium models for flow in porous media. (abstract)
  • 06 October 2022 – 15h00 to 16h00 Rekha KhotNonconforming virtual elements for the biharmonic equation with Morley degrees of freedom on polygonal meshes. (abstract)

2021 – 2022

  • 21 September 2022 – 15h00 to 16h00 Alexandre IMPERIALENumerical methods for time domain wave propagation problems applied to ultrasonic testing modelling. (abstract)
  • 16 June 2022 – 11h30 to 12h30 Cherif AmroucheElliptic Problems in Lipschitz and in $C^{1,1}$ Domains. (abstract)
  • 13 June 2022 – 11h00 to 12h00 Jean-Luc GuermondInvariant-domain preserving IMEX time stepping methods. (abstract)
  • 5 May 2022 – 11h00 to 12h00 Daniel Zegarra VasquezSimulation d’écoulements monophasiques en milieux poreux fracturés par la méthode des éléments finis mixtes hybrides. (abstract)
  • 19 April 2022 – 14h00 to 15h00 Christos XenophontosFinite Element approximation of singularly perturbed eigenvalue problems. (abstract)
  • 14 April 2022 – 11h00 to 12h00: Idrissa NiakhStable model reduction for linear variational inequalities with parameter-dependent constraints. (abstract)
  • 7 April 2022 – 17h00 to 18h00: Christoph LehrenfeldEmbedded Trefftz Discontinuous Galerkin methods. (abstract)
  • 24 March 2022 – 11h00 to 12h00: Miloslav Vlasak: A posteriori error estimates for discontinuous Galerkin method. (abstract)
  • 10 March 2022 – 11h00 to 12h00: Ruma Maity: Parameter dependent finite element analysis for ferronematics solutions. (abstract)
  • 3 February 2022 – 11h00 to 12h00: Pierre Matalon: An h-multigrid method for Hybrid High-Order discretizations of elliptic equations. (abstract)
  • 27 January 2022 – 11h00 to 12h00: Frédéric LebonOn the modeling of nonlinear imperfect solid/solid interfaces by asymptotic techniques. (abstract)
  • 20 January 2022 – 11h00 to 12h00: Isabelle RamièreAutomatic multigrid adaptive mesh refinement with controlled accuracy for quasi-static nonlinear solid mechanics. (abstract)
  • 13 January 2022 – 11h00 to 12h00: Koondanibha Mitra: A posteriori estimates for nonlinear degenerate parabolic and elliptic equations. (abstract)
  • 10 December 2021 – 11h00 to 12h00: Gregor GantnerApplications of a space-time first-order system least-squares formulation for parabolic PDEs. (abstract)
  • 25 November 2021 – 11h00 to 12h00: Pierre GosseletAsynchronous Global/Local coupling. (abstract)
  • 24 November 2021 – 10h30 to 11h30: Grégory EtangsaleA primal hybridizable discontinuous Galerkin method for modelling flows in fractured porous media. (abstract)

2020 – 2021

  • 06 September 2021 – 15h00 to 16h00: Rolf Stenberg: Nitsche’s Method for Elastic Contact Problems. (abstract)
  • 17 June 2021 – 11h00 to 12h00: Elyes Ahmed: Adaptive fully-implicit solvers and a posteriori error control for multiphase flow with wells. (abstract)
  • 3 June 2021 – 11h00 to 12h00: Oliver Sutton: High order, mesh-based multigroup discrete ordinates schemes for the linear Boltzmann transport problem. (abstract)
  • 29 April 2021 – 11h00 to 12h00: Lorenzo Mascotto: Enriched nonconforming virtual element methods (abstract)
  • 1 April 2021 – 11h00 to 12h00: André Harnist : Improved error estimates for Hybrid High-Order discretizations of Leray–Lions problems (abstract)
  • 11 March 2021 – 15h00 to 16h00: Omar Duran : Explicit and implicit hybrid high-order methods for the wave equation in time regime (abstract)
  • 25 February 2021 – 14h00 to 15h00: Buyang Li : A bounded numerical solution with a small mesh size implies existence of a smooth solution to the time-dependent Navier–Stokes equations (abstract)
  • 18 February 2021 – 11h00 to 12h00: Roland Maier :  Multiscale scattering in nonlinear Kerr-type media (abstract)
  • 10 December 2020 – 16h00 to 17h00: Ani Miraçi : A-posteriori-steered and adaptive p-robust multigrid solvers (abstract)
  • 9 December 2020 – 16h00 to 17h00: Riccardo Milani : Compatible Discrete Operator schemes for the unsteady incompressible Navier–Stokes equations (abstract)
  • 26 November 2020 – 16h00 to 17h00: Koondanibha Mitra : A posteriori error bounds for the Richards equation (abstract)
  • 19 November 2020 – 11h00 to 12h00: Joëlle Ferzly : Semismooth and smoothing Newton methods for nonlinear systems with complementarity constraints: adaptivity and inexact resolution (abstract)
  • 5 November 2020 – 11h00 to 12h00: Zhaonan Dong : On a posteriori error estimates for non-conforming Galerkin methods (abstract)
  • 22 October 2020 – 11h00 to 12h00: Théophile Chaumont-Frelet : A posteriori error estimates for Maxwell’s equations based on flux quasi-equilibration (abstract)
  • 15 October 2020 – 11h00 to 12h00: Florent Hédin : A hybrid high-order (HHO) method with non-matching meshes in discrete fracture networks (abstract)

2019 – 2020

  • 16 March 2020 – 15h00 to 16h00: Bochra Mejri : Topological sensitivity analysis for identification of voids under Navier’s boundary conditions in linear elasticity (abstract)
  • 25 February 2020 – 15h00 to 16h00: Jakub Both : Robust iterative solvers for thermo-poro-visco-elasticity via gradient flows (abstract)
  • 16 October 2019 – 14h00 to 15h00: Nicolas Pignet : Hybrid High-Order method for nonlinear solid mechanics (abstract)
  • 27 September 2019 – 15h00 to 16h00: Ivan Yotov : A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media (abstract)
  • 5 September 2019 – 15h00 to 16h00: Koondi Mitra : A fast and stable linear iterative scheme for nonlinear parabolic problems (abstract)

2018 – 2019

  • 11 July 2019 – 11h00 to 12h00: Jose Fonseca : Towards scalable parallel adaptive simulations with ParFlow (abstract)
  • 6 June 2019 – 11h00 to 12h00: Quanling Deng : High-order generalized-alpha methods and splitting schemes (abstract)
  • 12 April 2019 – 14h30 to 15h30: Menel Rahrah : Mathematical modelling of fast, high volume infiltration in poroelastic media using finite elements (abstract)
  • 18 March 2019 – 14h to 15h: Patrik Daniel : Adaptive hp-finite elements with guaranteed error contraction and inexact multilevel solvers (abstract)
  • 14 February 2019 – 15h to 16h: Thibault Faney, Soleiman Yousef : Accélération d’un simulateur d’équilibres thermodynamiques par apprentissage automatique (abstract)
  • 7 February 2019 – 11h to 12h: Gregor Gantner : Optimal adaptivity for isogeometric finite and boundary element methods (abstract)
  • 31 January 2019 – 14h30 to 15h30: Camilla Fiorini : Sensitivity analysis for hyperbolic PDEs systems with discontinuous solution: the case of the Euler Equations. (abstract)
  • 9 January 2019 – 11h to 12h: Zhaonan Dong : hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes (abstract)
  • 13 December 2018 – 11h to 12h: Maxime Breden : An introduction to a posteriori validation techniques, illustrated on the Navier-Stokes equations (abstract)
  • 5 December 2018 – 11h00 to 12h00: Amina Benaceur : Model reduction for nonlinear thermics and mechanics (abstract)

2017 – 2018

  • 16 April 2018 – 15h to 16h: Simon Lemaire : An optimization-based method for the numerical approximation of sign-changing PDEs (abstract)
  • 20 Febraury 2018 – 15h to 16h: Thirupathi Gudi : An energy space based approach for the finite element approximation of the Dirichlet boundary control problem (abstract)
  • 15 Febraury 2018 – 14h to 15h: Franz Chouly : About some a posteriori error estimates for small strain elasticity (abstract)
  • 30 November 2017 – 14h to 15h: Sébastien Furic : Construction & Simulation of System-Level Physical Models (abstract)
  • 2 November 2017 – 11h to 12h: Hend Benameur: Identification of parameters, fractures ans wells in porous media (abstract)
  • 10 October 2017 – 11h to 12h: Peter Minev: Recent splitting schemes for the incompressible Navier-Stokes equations (abstract)
  • 18 September 2017 – 13h to 14h: Théophile Chaumont: High order finite element methods for the Helmholtz equation in highly heterogeneous media (abstract)

2016 – 2017

  • 29 June 2017 – 15h to 16h: Gouranga Mallik: A priori and a posteriori error control for the von Karman equations (abstract)
  • 22 June 2017 – 15h to 16h: Valentine Rey: Goal-oriented error control within non-overlapping domain decomposition methods to solve elliptic problems (abstract)
  • 15 June 2017 – 15h to 16h:
  • 6 June 2017 – 11h to 12h: Ivan Yotov: Coupled multipoint flux and multipoint stress mixed finite element methods for poroelasticity (abstract)
  • 1 June 2017 – 10h to 12h:
    • Joscha GedickeAn adaptive finite element method for two-dimensional Maxwell’s equations (abstract)
    • Martin EigelAdaptive stochastic FE for explicit Bayesian inversion with hierarchical tensor representations (abstract)
    • Quang Duc Bui: Coupled Parareal-Schwarz Waveform relaxation method for advection reaction diffusion equation in one dimension (abstract)
  • 16 May 2017 – 15h to 16h: Quanling Deng: Dispersion Optimized Quadratures for Isogeometric Analysis (abstract)
  • 11 May 2017 – 15h to 16h: Sarah Ali Hassan: A posteriori error estimates and stopping criteria for solvers using domain decomposition methods and with local time stepping (abstract)
  • 13 Apr. 2017 – 15h to 16h: Janelle Hammond: A non intrusive reduced basis data assimilation method and its application to outdoor air quality models (abstract)
  • 30 Mar. 2017 – 10h to 11h: Mohammad Zakerzadeh: Analysis of space-time discontinuous Galerkin scheme for hyperbolic and viscous conservation laws (abstract)
  • 23 Mar. 2017 – 15h to 16h: Karol Cascavita: Discontinuous Skeletal methods for yield fluids (abstract)
  • 16 Mar. 2017 – 15h to 16h: Thomas Boiveau: Approximation of parabolic equations by space-time tensor methods (abstract)
  • 9 Mar. 2017 – 15h to 16h: Ludovic Chamoin: Multiscale computations with MsFEM: a posteriori error estimation, adaptive strategy, and coupling with model reduction (abstract)
  • 2 Mar. 2017 – 15h to 16h: Matteo Cicuttin: Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. (abstract)
  • 23 Feb. 2017
    10h to 10h45 : Lars Diening: Linearization of the p-Poisson equation (abstract)
    10h45 to 11h30 : Christian Kreuzer: Quasi-optimality of discontinuous Galerkin methods for parabolic problems (abstract)
  • 26 Jan. 2017 – 15h to 16h: Amina BenaceurAn improved reduced basis method for non-linear heat transfer (abstract)
  • 19 Jan. 2017 – 15h to 16h: Laurent Monasse: A 3D conservative coupling between a compressible flow and a fragmenting structure (abstract)
  • 5 Jan. 2017 – 15h to 16h: Agnieszka Miedlar: Moving eigenvalues and eigenvectors by simple perturbations (abstract)
  • 8 Dec. 2016 – 15h to 16h: Luca Formaggia: Hybrid dimensional Darcy flow in fractured porous media, some recent results on mimetic discretization (abstract)
  • 22 Sept. 2016 – 15h to 16h: Paola AntoniettiFast solution techniques for high order Discontinuous Galerkin methods (abstract)

2015 – 2016

  • 29 Oct. 2015 – 15h to 16h: Sarah Ali HassanA posteriori error estimates for domain decomposition methods (abstract)
  • 05 Nov. 2015 – 16h to 17h: Iain SmearsRobust and efficient preconditioners for the discontinuous Galerkin time-stepping method (abstract)
  • 12 Nov. 2015 -16h to 17h: Elyes Ahmed: Space-time domain decomposition method for two-phase flow equations (abstract)
  • 19 Nov. 2015 – 16h to 17h: Géraldine PichotGeneration algorithms of stationary Gaussian random fields (abstract)
  • 26 Nov. 2015-16h to 17h: Jérôme JaffréDiscrete reduced models for flow in porous media with fractures and barriers (abstract)
  • 03 Dec. 2015 – 16h to 17h: François Clément: Safe and Correct Programming for Scientific Computing (abstract)
  • 10 Dec. 2015 – 16h to 17h: Nabil Birgle: Composite Method on Polygonal Meshes (abstract)11 Feb. 2016: Michel
  • Kern: Reactive transport in porous media: Formulations and numerical methods
  • 25 Feb. 2016: Martin Vohralík
  • 3 March 2016: François Clément: Safe and Correct Programming for Scientific Computing pt II

A posteriori error estimates robust with respect to nonlinearities and final time.

Martin Vohralík: Thursday, 25th May at 11:00 ABSTRACT: A posteriori estimates enable us to certify the error committed in a numerical simulation. In particular, the equilibrated flux reconstruction technique yields a guaranteed error upper bound, where the flux obtained by local postprocessing is of independent interest since it is always locally conservative. In this talk, we tailor this methodology to model nonlinear and time-dependent problems to obtain estimates that are robust, i.e., of quality independent of the strength of the nonlinearities and the final time. These estimates include and build on common iterative linearization schemes such as Zarantonello, Picard, Newton, or M- and L-ones. We first consider steady problems and conceive two settings: we either augment the energy difference by the discretization error of the current linearization step, or we design iteration-dependent norms that feature weights given by the current iterate. We then turn to unsteady problems. Here we first consider the linear heat equation and finally move to the Richards one, which is doubly nonlinear and exhibits both parabolic–hyperbolic and parabolic–elliptic degeneracies. Robustness with respect to the final time and local efficiency in both time and space are addressed here. Numerical experiments illustrate the theoretical findings all along the presentation.

Lire la suite

On the preconditioned Newton’s method for Richards’ equation

Konstantin Brenner: Thursday, 11th May at 11:00 ABSTRACT: Richards’ equation is arguably the most popular hydrogeological flow model, which can be used to predict the underground water movement under both saturated and unsaturated conditions. However, despite its importance for hydrogeological applications, this equation is infamous for being difficult to solve numerically. Indeed, depending on the flow parameters, the resolution of the systems arising after the discretization may become an extremely challenging task, as the linearization schemes such as Picard or Newton’s methods may fail or exhibit unacceptably slow convergence. In this presentation, I will first give a brief overview of Richards’ equation both from the hydrogeological and mathematical perspectives. Then we will discuss the nonlinear preconditioning strategies that can be used to improve the performance of Newton’s method. In this regard, I will present some traditional techniques involving the primary variables substitution as well as some recent ones based on the nonlinear Jacobi or block Jacobi preconditioning. The later family of (block) Jacobi-Newton methods turn out to be a very attractive option as they allow for the global convergence analysis in the framework of the Monotone Newton Theorem.

Lire la suite

High order exponential fitting discretizations for convection diffusion problems

Ludmil Zikatanov: Thursday, 4th May at 11:00 ABSTRACT: We discuss discretizations for convection diffusion equations in arbitrary spatial dimensions. Targeted applications include the Nernst-Plank equations for transport of species in a charged media. We illustrate how such exponentially fitted methods are derived in any spatial dimension. A main step in proving error estimates is showing unisolvence for the quasi-polynomial spaces of differential forms defined as weighted spaces of differential forms with polynomial coefficients. We show that the unisolvent set of functionals for such spaces on a simplex in any spatial dimension is the same as the set of such functionals used for the polynomial spaces. We are able to prove our results without the use of Stokes’ Theorem, which is the standard tool in showing the unisolvence of functionals in polynomial spaces of differential forms. This is joint work with Shuonan Wu (Beijing University).

Lire la suite

23rd March – Marien-Lorenzo Hanot: Polytopal discretization of advanced differential complexes.

Marien-Lorenzo Hanot: Thursday, 23rd March at 11:00 ABSTRACT: We are interested in the discretization of advanced differential complexes. That is to say, complexes presenting higher regularity or additional algebraic constraints compared to the De Rham complex.This type of complex appears naturally in the discretization of many systems of differential equations. For example, the Stokes complex uses the same operators as the De Rham complex. Still, it requires an increased regularity, or the Div-Div complex appears in biharmonic equations and requires the use of fields with values in symmetric or traceless matrices. The principle of polytopal methods is to use discrete functions not belonging to a subset of the continuous functions but are composed of a collection of polynomials defined on objects of any dimension of the mesh (on edges, faces, cells…).This allows using very generic meshes, in our case composed of arbitrary contractible polytopes, while keeping the computability of discrete functions. The objective is to present the construction of a family of discrete 3-dimensional Div-Div complexes for arbitrary polynomial degrees. These complexes are consistent on polynomial functions, which is the basis for obtaining an optimal convergence of the schemes built on them. Moreover, they preserve the algebraic structure of the continuous complex, in the sense that the cohomology of the discrete complex is isomorphic to that of the continuous.

Lire la suite

Parameter studies automation with Prune_rs

Simon Legrand: Thursday 2nd February at 11:00 ABSTRACT: While essential in most scientific fields, parameter studies can be tedious and error-prone if they are not led with proper tools. Prune_rs (Prune in Rust) is a tool/language aimed at easily describing complex parameter spaces and automatizing the execution of commands over each parameter combination. It also offers predefined user patterns to store results and simplifies postprocessing. Prune_rs is an ongoing development process, and we would be glad to discuss your suggestions to make it better!

Lire la suite

9th February – Roland Maier: Semi-explicit time discretization schemes for elliptic-parabolic problems

Roland Maier: Thursday 9th February at 11:00 ABSTRACT: This talk is about semi-explicit time-stepping schemes for coupled elliptic-parabolic problems as they arise, for instance, in the context of poroelasticity. If the coupling between the equations is rather weak, such schemes may be applied. Their main advantage is that they decouple the equations and therefore allow for faster computations. Theoretical convergence results are presented that rely on a close connection of the semi-explicit schemes to partial differential equations that include delay terms. Numerical experiments confirm the theoretical findings.

Lire la suite

17th November – Fabio Vicini: Flow simulations on porous fractured media: a small numerical overview from my perspective

Fabio Vicini Thursday 17th Nov at 11:00   ABSTRACT: The presentation will focus on some numerical aspects of the simulations of porous-fractured media I have experienced so far. Flow simulations on porous fractured media contain many numerical challenging issues related to complex geometries and the severe size of the computational domain. In real applications, indeed, the network of fractures immersed in the rock matrix is usually generated according to known probabilistic distributions, which lead to a huge number of fractures with a multi-scale distribution in sizes. For these reasons, tailored numerical methods are s to overcome these problems and for efficient handling of the computational resources. I will show two different approaches to tackle the classic Darcy single-phase problem with the Discrete Fracture Networks (DFNs) model: one related to a constrained optimization problem and the second related to the modern Virtual Element (VEM) framework. Moreover, I will present the possibility of investigating the Darcy problem on DFNs as a parameterized differential problem with a Reduced Basis (RB) technique combined with a-posteriori error control. Finally, I will discuss the possibility of extending the VEM approach for the simulation of a two-phase flow of immiscible fluids.

Lire la suite

28th November – Xuefeng Liu: Guaranteed eigenfunction computation and its application to shape optimization problems

Xuefeng Liu Monday 28th Nov at 11:00   ABSTRACT: We are concerned with the guaranteed computation of the eigenfunction (or eigenspace) of differential operators. Upon the setting of eigenvalue problems, three algorithms are proposed to give rigorous and efficient error estimation for the approximate eigenfunctions: Algorithm I: Rayleigh quotient error based algorithm; Algorithm II: Variational residual error based algorithm; Algorithm III: Projection error based algorithm. The guaranteed eigenfunction computation is applied to solving shape optimization problems. For example, the minimization of the Laplacian eigenvalue over polygonal domains. By explicitly evaluating the Hadamard shape derivative with guaranteed computation of both eigenvalues and eigenfunctions, we provide a computer-assisted proof to declare that the equilateral triangle minimizes the first Laplacian under certain non-homogeneous Neumann boundary condition under the radius constraint condition. References: 1. R. Endo and X. Liu, Shape optimization for the Laplacian eigenvalue over triangles and its application to interpolation error constant estimation, 2. X. Liu and T. Vejchodsky, Projection error-based guaranteed L2 error bounds for finite element approximations of Laplace eigenfunctions, 3.X. Liu and T. Vejchodsky, Fully computable a posteriori error bounds for eigenfunctions, Numer. Math. 152 (2022), 183–221.

Lire la suite

20th October – Iuliu Sorin Pop: Non-equilibrium models for flow in porous media

Iuliu Sorin Pop Thursday 20th Oct at 10:00   ABSTRACT: We discuss various aspects related to non-equilibrium mathematical models for porous media flow. Typically, such models assume that quantities like saturation, phase pressure differences, or relative permeability are related by monotone, algebraic relationships. Under such assumptions, the solutions satisfy the maximum principle. On the other hand, experimental work published in the past decades report that phenomena like saturation overshoot, or the formation of finger profiles have been observed whenever the flow is sufficiently rapid. Such results are ruled out by standard, equilibrium models. This is the main motivation to consider non-equilibrium models, where dynamic or hysteretic effects are included in the above-mentioned relationships. The resulting models are nonlinear evolution systems of (pseudo-)parabolic and possibly degenerate equations, and involving differential inclusions. For such problems, we present first some results concerning the derivation of such models from the pore scale to the Darcy scale, the existence and uniqueness of weak solutions, and discuss different numerical schemes. This includes aspects like the rigorous convergence of the discretization, and solving the emerging nonlinear time-discrete or fully discrete problems. This is joint work with X. Cao (Toronto), S. Karpinski (Munich), S. Lunowa (Munich), K. Mitra (Hasselt), F.A. Radu (Bergen)

Lire la suite

06th October – Rekha Khot: Nonconforming virtual elements for the biharmonic equation with Morley degrees of freedom on polygonal meshes

Rekha Khot Thursday 06th Oct at 15:00   ABSTRACT: The lowest-order nonconforming virtual element extends the Morley triangular element to polygons for the approximation of the weak solution $u \in  V := H_0^2(Ω)$ to the biharmonic equation. Two nonconforming virtual element spaces have been introduced in [1, 4] for $H^3$ regular solutions, while a medius analysis in [3] allows minimal regularity. In this talk, we will discuss an abstract framework (cf. [2]) with two hypotheses (H1)-(H2) for unified stability and a priori error analysis of at least two different discrete spaces (even a mixture of those). A smoother J allows rough source terms $F \in V^∗ = H^{−2}(\Omega)$. The a priori and a posteriori error analysis circumvents any trace of second derivatives by a computable conforming companion operator $J : V_h \rightarrow V$ from the nonconforming virtual element space $V_h$. The operator J is a right-inverse of the interpolation operator and leads to optimal error estimates in piecewise Sobolev norms without any additional regularity assumptions on $$u \in V$$. As a smoother the companion operator modifies the discrete right-hand side and then allows a quasi-best approximation. An explicit residual-based a posteriori error estimator is reliable and efficient up to data oscillations. Numerical examples display the predicted empirical convergence rates for uniform and optimal convergence rates for adaptive mesh-refinement. [1] P. F. Antonietti, G. Manzini, and M. Verani, The fully nonconforming virtual element method for biharmonic problems, Math. Models Methods Appl. Sci., 28 (2018), pp. 387–407. [2] C. Carstensen, R. Khot, and A. K. Pani, Nonconforming virtual elements for the biharmonic equation with Morley degrees of freedom on polygonal meshes, arXiv:2205.08764, (2022). [3] J. Huang and Y. Yu, A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations, J. Comput. Appl. Math., 386 (2021), p. 21. [4] J. Zhao, B. Zhang,…

Lire la suite