Internal Seminar

Internal Seminar Calendar

2023 – 2024

  • 25 April 2024 – 11h00 to 12h00 Martin Werner Licht: Computable reliable bounds for Poincaré–Friedrichs constants via Čech–de-Rham complexes. (abstract)
  • 4 April 2024 – 11h00 to 12h00 Roland Maier: A localized orthogonal decomposition strategy for hybrid discontinuous Galerkin methods. (abstract)
  • 2 April 2024 – 14h00 to 15h00 Andreas Rupp: Homogeneous multigrid for hybrid discretizations: application to HHO methods. (abstract)
  • 18 January 2024 – 14h00 to 15h00 Zoubida Mghazli: Modeling some biological phenomena via the porous media approach. (abstract)
  • 23 November 2023 – 11h00 to 12h00 Olivier Hénot: Computer-assisted proofs of radial solutions of elliptic systems on R^d. (abstract)
  • 16 November 2023 – 17h00 to 18h00 Maxime Theillard: A Volume-Preserving Reference Map Method for the Level Set Representation. (abstract)
  • 13 November 2023 – 11h00 to 12h00 Charles Parker: Implementing $H^2$-conforming finite elements without enforcing $C^1$-continuity. (abstract)
  • 09 November 2023 – 11h00 to 12h00 Maxime Breden: Computer-assisted proofs for nonlinear equations: how to turn a numerical simulation into a theorem. (abstract)

2022 – 2023

  • 25 May 2023 – 11h00 to 12h00 Martin Vohralík: A posteriori error estimates robust with respect to nonlinearities and final time. (abstract)
  • 11 May 2023 – 11h00 to 12h00 Konstantin Brenner: On the preconditioned Newton’s method for Richards’ equation. (abstract)
  • 4 May 2023 – 11h00 to 12h00 Ludmil Zikatanov: High order exponential fitting discretizations for convection diffusion problems. (abstract)
  • 23 March 2023 – 11h00 to 12h00 Marien Hanot: Polytopal discretization of advanced differential complexes.(abstract)
  • 9 February 2023 – 11h00 to 12h00 Roland Maier: Semi-explicit time discretization schemes for elliptic-parabolic problems. (abstract)
  • 2 February 2023 – 11h00 to 12h00 Simon Legrand: Parameter studies automation with Prune_rs. (abstract)
  • 28 November 2022 – 11h00 to 12h00 Xuefeng LiuGuaranteed eigenvalue/eigenfunction computation and its application to shape optimization problems. (abstract)
  • 17 November 2022 – 11h00 to 12h00 Fabio ViciniFlow simulations on porous fractured media: a small numerical overview from my perspective. (abstract)
  • 20 October 2022 – 10h00 to 11h00 Iuliu Sorin PopNon-equilibrium models for flow in porous media. (abstract)
  • 06 October 2022 – 15h00 to 16h00 Rekha KhotNonconforming virtual elements for the biharmonic equation with Morley degrees of freedom on polygonal meshes. (abstract)

2021 – 2022

  • 21 September 2022 – 15h00 to 16h00 Alexandre IMPERIALENumerical methods for time domain wave propagation problems applied to ultrasonic testing modelling. (abstract)
  • 16 June 2022 – 11h30 to 12h30 Cherif AmroucheElliptic Problems in Lipschitz and in $C^{1,1}$ Domains. (abstract)
  • 13 June 2022 – 11h00 to 12h00 Jean-Luc GuermondInvariant-domain preserving IMEX time stepping methods. (abstract)
  • 5 May 2022 – 11h00 to 12h00 Daniel Zegarra VasquezSimulation d’écoulements monophasiques en milieux poreux fracturés par la méthode des éléments finis mixtes hybrides. (abstract)
  • 19 April 2022 – 14h00 to 15h00 Christos XenophontosFinite Element approximation of singularly perturbed eigenvalue problems. (abstract)
  • 14 April 2022 – 11h00 to 12h00: Idrissa NiakhStable model reduction for linear variational inequalities with parameter-dependent constraints. (abstract)
  • 7 April 2022 – 17h00 to 18h00: Christoph LehrenfeldEmbedded Trefftz Discontinuous Galerkin methods. (abstract)
  • 24 March 2022 – 11h00 to 12h00: Miloslav Vlasak: A posteriori error estimates for discontinuous Galerkin method. (abstract)
  • 10 March 2022 – 11h00 to 12h00: Ruma Maity: Parameter dependent finite element analysis for ferronematics solutions. (abstract)
  • 3 February 2022 – 11h00 to 12h00: Pierre Matalon: An h-multigrid method for Hybrid High-Order discretizations of elliptic equations. (abstract)
  • 27 January 2022 – 11h00 to 12h00: Frédéric LebonOn the modeling of nonlinear imperfect solid/solid interfaces by asymptotic techniques. (abstract)
  • 20 January 2022 – 11h00 to 12h00: Isabelle RamièreAutomatic multigrid adaptive mesh refinement with controlled accuracy for quasi-static nonlinear solid mechanics. (abstract)
  • 13 January 2022 – 11h00 to 12h00: Koondanibha Mitra: A posteriori estimates for nonlinear degenerate parabolic and elliptic equations. (abstract)
  • 10 December 2021 – 11h00 to 12h00: Gregor GantnerApplications of a space-time first-order system least-squares formulation for parabolic PDEs. (abstract)
  • 25 November 2021 – 11h00 to 12h00: Pierre GosseletAsynchronous Global/Local coupling. (abstract)
  • 24 November 2021 – 10h30 to 11h30: Grégory EtangsaleA primal hybridizable discontinuous Galerkin method for modelling flows in fractured porous media. (abstract)

2020 – 2021

  • 06 September 2021 – 15h00 to 16h00: Rolf Stenberg: Nitsche’s Method for Elastic Contact Problems. (abstract)
  • 17 June 2021 – 11h00 to 12h00: Elyes Ahmed: Adaptive fully-implicit solvers and a posteriori error control for multiphase flow with wells. (abstract)
  • 3 June 2021 – 11h00 to 12h00: Oliver Sutton: High order, mesh-based multigroup discrete ordinates schemes for the linear Boltzmann transport problem. (abstract)
  • 29 April 2021 – 11h00 to 12h00: Lorenzo Mascotto: Enriched nonconforming virtual element methods (abstract)
  • 1 April 2021 – 11h00 to 12h00: André Harnist : Improved error estimates for Hybrid High-Order discretizations of Leray–Lions problems (abstract)
  • 11 March 2021 – 15h00 to 16h00: Omar Duran : Explicit and implicit hybrid high-order methods for the wave equation in time regime (abstract)
  • 25 February 2021 – 14h00 to 15h00: Buyang Li : A bounded numerical solution with a small mesh size implies existence of a smooth solution to the time-dependent Navier–Stokes equations (abstract)
  • 18 February 2021 – 11h00 to 12h00: Roland Maier :  Multiscale scattering in nonlinear Kerr-type media (abstract)
  • 10 December 2020 – 16h00 to 17h00: Ani Miraçi : A-posteriori-steered and adaptive p-robust multigrid solvers (abstract)
  • 9 December 2020 – 16h00 to 17h00: Riccardo Milani : Compatible Discrete Operator schemes for the unsteady incompressible Navier–Stokes equations (abstract)
  • 26 November 2020 – 16h00 to 17h00: Koondanibha Mitra : A posteriori error bounds for the Richards equation (abstract)
  • 19 November 2020 – 11h00 to 12h00: Joëlle Ferzly : Semismooth and smoothing Newton methods for nonlinear systems with complementarity constraints: adaptivity and inexact resolution (abstract)
  • 5 November 2020 – 11h00 to 12h00: Zhaonan Dong : On a posteriori error estimates for non-conforming Galerkin methods (abstract)
  • 22 October 2020 – 11h00 to 12h00: Théophile Chaumont-Frelet : A posteriori error estimates for Maxwell’s equations based on flux quasi-equilibration (abstract)
  • 15 October 2020 – 11h00 to 12h00: Florent Hédin : A hybrid high-order (HHO) method with non-matching meshes in discrete fracture networks (abstract)

2019 – 2020

  • 16 March 2020 – 15h00 to 16h00: Bochra Mejri : Topological sensitivity analysis for identification of voids under Navier’s boundary conditions in linear elasticity (abstract)
  • 25 February 2020 – 15h00 to 16h00: Jakub Both : Robust iterative solvers for thermo-poro-visco-elasticity via gradient flows (abstract)
  • 16 October 2019 – 14h00 to 15h00: Nicolas Pignet : Hybrid High-Order method for nonlinear solid mechanics (abstract)
  • 27 September 2019 – 15h00 to 16h00: Ivan Yotov : A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media (abstract)
  • 5 September 2019 – 15h00 to 16h00: Koondi Mitra : A fast and stable linear iterative scheme for nonlinear parabolic problems (abstract)

2018 – 2019

  • 11 July 2019 – 11h00 to 12h00: Jose Fonseca : Towards scalable parallel adaptive simulations with ParFlow (abstract)
  • 6 June 2019 – 11h00 to 12h00: Quanling Deng : High-order generalized-alpha methods and splitting schemes (abstract)
  • 12 April 2019 – 14h30 to 15h30: Menel Rahrah : Mathematical modelling of fast, high volume infiltration in poroelastic media using finite elements (abstract)
  • 18 March 2019 – 14h to 15h: Patrik Daniel : Adaptive hp-finite elements with guaranteed error contraction and inexact multilevel solvers (abstract)
  • 14 February 2019 – 15h to 16h: Thibault Faney, Soleiman Yousef : Accélération d’un simulateur d’équilibres thermodynamiques par apprentissage automatique (abstract)
  • 7 February 2019 – 11h to 12h: Gregor Gantner : Optimal adaptivity for isogeometric finite and boundary element methods (abstract)
  • 31 January 2019 – 14h30 to 15h30: Camilla Fiorini : Sensitivity analysis for hyperbolic PDEs systems with discontinuous solution: the case of the Euler Equations. (abstract)
  • 9 January 2019 – 11h to 12h: Zhaonan Dong : hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes (abstract)
  • 13 December 2018 – 11h to 12h: Maxime Breden : An introduction to a posteriori validation techniques, illustrated on the Navier-Stokes equations (abstract)
  • 5 December 2018 – 11h00 to 12h00: Amina Benaceur : Model reduction for nonlinear thermics and mechanics (abstract)

2017 – 2018

  • 16 April 2018 – 15h to 16h: Simon Lemaire : An optimization-based method for the numerical approximation of sign-changing PDEs (abstract)
  • 20 Febraury 2018 – 15h to 16h: Thirupathi Gudi : An energy space based approach for the finite element approximation of the Dirichlet boundary control problem (abstract)
  • 15 Febraury 2018 – 14h to 15h: Franz Chouly : About some a posteriori error estimates for small strain elasticity (abstract)
  • 30 November 2017 – 14h to 15h: Sébastien Furic : Construction & Simulation of System-Level Physical Models (abstract)
  • 2 November 2017 – 11h to 12h: Hend Benameur: Identification of parameters, fractures ans wells in porous media (abstract)
  • 10 October 2017 – 11h to 12h: Peter Minev: Recent splitting schemes for the incompressible Navier-Stokes equations (abstract)
  • 18 September 2017 – 13h to 14h: Théophile Chaumont: High order finite element methods for the Helmholtz equation in highly heterogeneous media (abstract)

2016 – 2017

  • 29 June 2017 – 15h to 16h: Gouranga Mallik: A priori and a posteriori error control for the von Karman equations (abstract)
  • 22 June 2017 – 15h to 16h: Valentine Rey: Goal-oriented error control within non-overlapping domain decomposition methods to solve elliptic problems (abstract)
  • 15 June 2017 – 15h to 16h:
  • 6 June 2017 – 11h to 12h: Ivan Yotov: Coupled multipoint flux and multipoint stress mixed finite element methods for poroelasticity (abstract)
  • 1 June 2017 – 10h to 12h:
    • Joscha GedickeAn adaptive finite element method for two-dimensional Maxwell’s equations (abstract)
    • Martin EigelAdaptive stochastic FE for explicit Bayesian inversion with hierarchical tensor representations (abstract)
    • Quang Duc Bui: Coupled Parareal-Schwarz Waveform relaxation method for advection reaction diffusion equation in one dimension (abstract)
  • 16 May 2017 – 15h to 16h: Quanling Deng: Dispersion Optimized Quadratures for Isogeometric Analysis (abstract)
  • 11 May 2017 – 15h to 16h: Sarah Ali Hassan: A posteriori error estimates and stopping criteria for solvers using domain decomposition methods and with local time stepping (abstract)
  • 13 Apr. 2017 – 15h to 16h: Janelle Hammond: A non intrusive reduced basis data assimilation method and its application to outdoor air quality models (abstract)
  • 30 Mar. 2017 – 10h to 11h: Mohammad Zakerzadeh: Analysis of space-time discontinuous Galerkin scheme for hyperbolic and viscous conservation laws (abstract)
  • 23 Mar. 2017 – 15h to 16h: Karol Cascavita: Discontinuous Skeletal methods for yield fluids (abstract)
  • 16 Mar. 2017 – 15h to 16h: Thomas Boiveau: Approximation of parabolic equations by space-time tensor methods (abstract)
  • 9 Mar. 2017 – 15h to 16h: Ludovic Chamoin: Multiscale computations with MsFEM: a posteriori error estimation, adaptive strategy, and coupling with model reduction (abstract)
  • 2 Mar. 2017 – 15h to 16h: Matteo Cicuttin: Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. (abstract)
  • 23 Feb. 2017
    10h to 10h45 : Lars Diening: Linearization of the p-Poisson equation (abstract)
    10h45 to 11h30 : Christian Kreuzer: Quasi-optimality of discontinuous Galerkin methods for parabolic problems (abstract)
  • 26 Jan. 2017 – 15h to 16h: Amina BenaceurAn improved reduced basis method for non-linear heat transfer (abstract)
  • 19 Jan. 2017 – 15h to 16h: Laurent Monasse: A 3D conservative coupling between a compressible flow and a fragmenting structure (abstract)
  • 5 Jan. 2017 – 15h to 16h: Agnieszka Miedlar: Moving eigenvalues and eigenvectors by simple perturbations (abstract)
  • 8 Dec. 2016 – 15h to 16h: Luca Formaggia: Hybrid dimensional Darcy flow in fractured porous media, some recent results on mimetic discretization (abstract)
  • 22 Sept. 2016 – 15h to 16h: Paola AntoniettiFast solution techniques for high order Discontinuous Galerkin methods (abstract)

2015 – 2016

  • 29 Oct. 2015 – 15h to 16h: Sarah Ali HassanA posteriori error estimates for domain decomposition methods (abstract)
  • 05 Nov. 2015 – 16h to 17h: Iain SmearsRobust and efficient preconditioners for the discontinuous Galerkin time-stepping method (abstract)
  • 12 Nov. 2015 -16h to 17h: Elyes Ahmed: Space-time domain decomposition method for two-phase flow equations (abstract)
  • 19 Nov. 2015 – 16h to 17h: Géraldine PichotGeneration algorithms of stationary Gaussian random fields (abstract)
  • 26 Nov. 2015-16h to 17h: Jérôme JaffréDiscrete reduced models for flow in porous media with fractures and barriers (abstract)
  • 03 Dec. 2015 – 16h to 17h: François Clément: Safe and Correct Programming for Scientific Computing (abstract)
  • 10 Dec. 2015 – 16h to 17h: Nabil Birgle: Composite Method on Polygonal Meshes (abstract)11 Feb. 2016: Michel
  • Kern: Reactive transport in porous media: Formulations and numerical methods
  • 25 Feb. 2016: Martin Vohralík
  • 3 March 2016: François Clément: Safe and Correct Programming for Scientific Computing pt II

December 9 – Riccardo Milani: Compatible Discrete Operator schemes for the unsteady incompressible Navier–Stokes equations

Riccardo Milani: Wednesday 9 December at 16:00 via this link with meeting ID: 996 3774 0482 and code: 190673 We develop face-based Compatible Discrete Operator (CDO-Fb) schemes for the unsteady, incompressible Stokes and Navier–Stokes equations. We introduce operators discretizing the gradient, the divergence, and the convection term. It is proved that the discrete divergence operator allows one to recover a discrete inf-sup condition. Moreover, the discrete convection operator is dissipative, a paramount property for the energy balance. The scheme is first tested in the steady case on general and deformed meshes in order to highlight the flexibility and the robustness of the CDO-Fb discretization. The focus is then moved onto the time-stepping techniques. In particular, we analyze the classical monolithic approach, consisting in solving saddle-point problems, and the Artificial Compressibility (AC) method, which allows one to avoid such saddle-point systems at the cost of relaxing the mass balance. Three classic techniques for the treatment of the convection term are investigated: Picard iterations, the linearized convection and the explicit convection. Numerical results stemming from first-order and then from second-order time-schemes show that the AC method is an accurate and efficient alternative to the classical monolithic approach.

Continue reading

November 26 – Koondanibha Mitra: A posteriori error bounds for the Richards equation

Koondanibha Mitra: Thursday 26 November at 16:00 via this link Richards equation is commonly used to model the flow of water and air through the soil, and serves as a gateway equation for multiphase flow through porous domains. It is a nonlinear advection-reaction-diffusion equation that exhibits both elliptic-parabolic and hyperbolic-parabolic kind of degeneracies. In this study, we provide fully computable, locally space-time efficient, and reliable a posteriori error bounds for numerical solutions of the fully degenerate Richards equation. This is achieved in a variation of the $ H^1(H^{-1})\cap L^2(L^2) \cap L^2(H^1)$ norm characterized by the minimum regularity inherited by the exact solutions. For showing global reliability, a non-local in time error estimate is derived individually for the $H^1(H^{-1})$, $L^2(L^2)$ and the $L^2(H^1)$ error components with a maximum principle and a degeneracy estimator being used for the last one. Local and global space-time efficient error bounds are obtained, and error contributors such as flux and time non-conformity, quadrature, linearisation, data oscillation, are identified and separated. The estimates hold also in space-time adaptive settings. The predictions are verified numerically and it is shown that the estimators correctly identify the errors up to a factor in the order of unity.

Continue reading

November 19 – Joëlle Ferzly: Semismooth and smoothing Newton methods for nonlinear systems with complementarity constraints: adaptivity and inexact resolution

Joëlle Ferzly: Thursday 19 November at 11:00 via zoom (meeting ID: 966 1837 4193 and code: zFG6Lb) We are interested in nonlinear algebraic systems with complementarity constraints stemming from numerical discretizations of nonlinear complementarity problems. The particularity is that they are nondifferentiable, so that classical linearization schemes like the Newton method cannot be applied directly. To approximate the solution of such nonlinear systems, an iterative linearization algorithm like the semismooth Newton-min can be used. We consider smoothing methods, where the nondifferentiable nonlinearity is smoothed. In particular, a smoothing Newton algorithm based on the smoothed min or Fischer-Burmeister function, and a smoothing interior-point algorithm. The corresponding linear system is approximately solved using any iterative linear algebraic solver. We derive an a posteriori error estimate that allows to distinguish the smoothing, linearization, and algebraic error components. These ingredients are then used to formulate adaptive criteria for stopping the linear and nonlinear solver. This leads us to propose an adaptive algorithm ensuring important savings in terms of the number of cumulated algebraic iterations. We apply our analysis to the system of variational inequalities describing the contact between two membranes. We will show that the proposed algorithm, in combination with the GMRES algebraic solver, is promising in comparison with other methods.

Continue reading

November 5 – Zhaonan Dong: On a posteriori error estimates for non-conforming Galerkin methods

Zhaonan Dong: Thursday 5 November at 11:00 via zoom (meeting ID: 961 6781 3449 and code: g4q44P) Non-conforming Galerkin methods are very popular for the stable and accurate numerical approximation of challenging PDE problems. The term “non-conforming” refers to approximations that do not respect the continuity properties of the PDE solutions. Nonetheless, to arrive at rigorous error control via a posteriori error estimates, non-conforming methods pose a number of challenges. I will present a novel methodology for proving a posteriori error estimates for the “extreme” class (in terms of non-conformity) of discontinuous Galerkin methods in various settings. For instance, we prove a posteriori error estimates for the recent family of Galerkin methods employing the general shaped polygonal and polyhedral elements, solving an open problem in the literature. Furthermore, with the help this new idea, we prove new a posteriori error bounds for various $hp$-version non-conforming FEMs for fourth-order elliptic problems; these results also solve a number of open questions in the literature, yet they arise relatively easily within the new reconstruction framework of proof. These results open a door to design new reliable adaptive algorithms for solving the problems in thin plate theories of elasticity, phase-field modeling and mathematical biology.

Continue reading

October 22 – Théophile Chaumont-Frelet: A posteriori error estimates for Maxwell’s equations based on flux quasi-equilibration

Théophile Chaumont-Frelet: Thursday 22 October at 11:00, A415, Inria Paris. I will present of a novel a posteriori estimator for finite element discretizations of Maxwell’s equations. The construction hinges on a modification of the flux equilibration technique, called quasi-equilibration. The resulting estimator is inexpensive to compute and polynomial-degree-robust, which means that the reliability and efficiency constants are independent of the discretization order. I will first describe the standard flux equilibration technique for the simpler case of Poisson’s problem, and explain why it is hard to directly apply this idea to Maxwell’s equations. Then, I will present in detail the derivation of the proposed estimator through the quasi-equilibration procedure. Numerical examples highlighting the key features of the estimator will be presented, and followed by concluding remarks.

Continue reading

October 15 – Florent Hédin: A hybrid high-order (HHO) method with non-matching meshes in discrete fracture networks

Florent Hédin: Thursday 15 October at 11:00, Gilles Kahn 1, Inria Paris. We are interested in efficient numerical methods for solving flow in large scale fractured networks. Fractures are ubiquitous in the subsurface. Flow in fractured rocks are of interest for many applications (water resources, geothermal applications, oil/gas extraction, nuclear waste disposal). The networks are modeled as Discrete Fractures Networks (DFN). The main challenges of such flow simulations are the uncertainty regarding the geometry and properties of the subsurface, the observed wide range of fractures length (from centimeters to kilometers) and the number of fractures (from thousands to millions of fractures). In natural rocks, flow is highly channelled, which motivates to mesh finely the fractures that carry most of the flow, and coarsely the remaining fractures. But independent triangular mesh generation from one fracture to another yields non matching triangles at the intersections between fractures. Mortar methods have been developed in the past years to deal with non matching grids. In this presentation, we propose an alternative based on the recent HHO method which naturally handles general meshes (polygons/polyhedral) and face polynomials of order k ≥ 0. Combined with refining/coarsening strategies, we will show how the HHO method allows to save computational time in DFN flow simulations.

Continue reading

Wednesday 5 – Amina Benaceur: Model reduction for nonlinear thermics and mechanics

Amina Benaceur: Wednesday 5 December at 11:00 am, A315 Inria Paris. This thesis introduces three new developments of the reduced basis method (RB) and the empirical interpolation method (EIM) for nonlinear problems. The first contribution is a new methodology, the Progressive RB-EIM (PREIM) which aims at reducing the cost of the phase during which the reduced model is constructed without compromising the accuracy of the final RB approximation. The idea is to gradually enrich the EIM approximation and the RB space, in contrast to the standard approach where both constructions are separate. The second contribution is related to the RB for variational inequalities with nonlinear constraints. We employ an RB-EIM combination to treat the nonlinear constraint. Also, we build a reduced basis for the Lagrange multipliers via a hierarchical algorithm that preserves the non-negativity of the basis vectors. We apply this strategy to elastic frictionless contact for non-matching meshes. Finally, the third contribution focuses on model reduction with data assimilation. A dedicated method has been introduced in the literature so as to combine numerical models with experimental measurements. We extend the method to a time-dependent framework using a POD-greedy algorithm in order to build accurate reduced spaces for all the time steps. Besides, we devise a new algorithm that produces better reduced spaces while minimizing the number of measurements required for the final reduced problem.

Continue reading

January 9 – Zhaonan Dong: hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes

Zhaonan Dong: Wednesday 9 January at 11 am, A415 Inria Paris. PDE models are often characterised by local features such as solution singularities/layers and domains with complicated boundaries. These special features make the design of accurate numerical solutions challenging, or require huge amount of computational resources. One way of achieving complexity reduction of the numerical solution for such PDE models is to design novel numerical methods which support general meshes consisting of polygonal/polyhedral elements, such that local features of the model can be resolved in efficiently by adaptive choices of such general meshes. In this talk, we will review the recently developed hp-version symmetric interior penalty discontinuous Galerkin (dG) finite element method for the numerical approximation of PDEs on general computational meshes consisting of polygonal/polyhedral (polytopic) elements. The key feature of the proposed dG method is that the stability and hp-version a-priori error bound are derived based on the specific choice of the interior penalty parameters which allows for edges/faces degeneration. Moreover, under certain practical mesh assumptions, the proposed dG method was proven to be available to incorporate very general polygonal/polyhedral elements with an arbitrary number of faces. Because of utilising general shaped elements, the dG method shows a great flexibility in designing an adaptive algorithm by refining or coarsening general polytopic elements. Especially for solving the convection-dominated problems on which boundary and interior layers may appear and need a lot of degrees of freedom to resolve. Finally, we will present several numerical examples through different classes of linear PDEs to highlight the practical performance of the proposed method.

Continue reading

December 13 – Maxime Breden: An introduction to a posteriori validation techniques, illustrated on the Navier-Stokes equations

Maxime Breden: Thursday 13 December at 11 am, A415 Inria Paris. The aim of a posteriori validation techniques is to obtain mathematically rigorous and quantitative existence theorems, using numerical simulations. Given an approximate solution, the general strategy is to combine a posteriori estimates with analytical ones to apply a fixed point theorem, which then yields the existence of a true solution in an explicit neighborhood of the approximate one. In the first part of the talk, I’ll present the main ideas in more detail, and describe the general framework in which they are applicable. In the second part, I’ll then focus on a specific example and explain how to validate a posteriori periodic solutions of the Navier-Stokes equations with a Taylor-Green type of forcing. This is joint work with Jan Bouwe van den Berg, Jean-Philippe Lessard and Lennaert van Veen.

Continue reading

April 16 – Simon Lemaire: An optimization-based method for the numerical approximation of sign-changing PDEs

Simon Lemaire: Thursday 16 April at 3 pm, A415 Inria Paris. We are interested in physical settings presenting an interface between a classical (positive) material and a (negative) metamaterial, in such a way that the coefficients of the model change sign in the domain. We study, in the “elliptic” case, the numerical approximation of such sign-shifting problems. We introduce a new numerical method, based on domain decomposition and optimization, that we prove to be convergent, as soon as, for a given right-hand side, the problem admits a solution that is unique. The proof of convergence does not rely on any symmetry assumption on the mesh family with respect to the sign-changing interface. In that respect, it gives a more convenient alternative to T-coercivity based approximation in the situations when the latter is applicable, whereas it constitutes a new paradigm in the situations when the latter is not. We illustrate our findings on a comprehensive set of test-cases.

Continue reading