Computable reliable bounds for Poincaré–Friedrichs constants via Čech–de-Rham complexes

Martin Licht: Thursday, 25th April at 11:00 Abstract: We derive computable and reliable upper bounds for Poincaré–Friedrichs constants of classical Sobolev spaces and, more generally, Sobolev de-Rham complexes. The upper bounds are in terms of local Poincaré–Friedrichs constants over subdomains and the smallest singular value of a finite-dimensional operator that is easily assembled from the geometric setting. Thus we reduce the computational effort when computing the Poincaré–Friedrichs constant of finite de-Rham complexes, and we provide computable reliable bounds even for the original Sobolev de-Rham complex. The reduction to a finite-dimensional system uses diagram chasing within a Čech–de-Rham complex.

Lire la suite

A localized orthogonal decomposition strategy for hybrid discontinuous Galerkin methods

Roland Maier: Thursday, 4th April at 11:00 Abstract: We formulate and analyze a multiscale method for an elliptic problem with an oscillatory coefficient based on a skeletal (hybrid) formulation. More precisely, we employ hybrid discontinuous Galerkin approaches and combine them with the localized orthogonal decomposition methodology to obtain a coarse-scale skeletal method that effectively includes fine-scale information. This work is a first step to reliably merge hybrid skeletal formulations and localized orthogonal decomposition and unite the advantages of both strategies. Numerical experiments are presented to illustrate the theoretical findings.

Lire la suite

A posteriori error estimates robust with respect to nonlinearities and final time.

Martin Vohralík: Thursday, 25th May at 11:00 ABSTRACT: A posteriori estimates enable us to certify the error committed in a numerical simulation. In particular, the equilibrated flux reconstruction technique yields a guaranteed error upper bound, where the flux obtained by local postprocessing is of independent interest since it is always locally conservative. In this talk, we tailor this methodology to model nonlinear and time-dependent problems to obtain estimates that are robust, i.e., of quality independent of the strength of the nonlinearities and the final time. These estimates include and build on common iterative linearization schemes such as Zarantonello, Picard, Newton, or M- and L-ones. We first consider steady problems and conceive two settings: we either augment the energy difference by the discretization error of the current linearization step, or we design iteration-dependent norms that feature weights given by the current iterate. We then turn to unsteady problems. Here we first consider the linear heat equation and finally move to the Richards one, which is doubly nonlinear and exhibits both parabolic–hyperbolic and parabolic–elliptic degeneracies. Robustness with respect to the final time and local efficiency in both time and space are addressed here. Numerical experiments illustrate the theoretical findings all along the presentation.

Lire la suite

On the preconditioned Newton’s method for Richards’ equation

Konstantin Brenner: Thursday, 11th May at 11:00 ABSTRACT: Richards’ equation is arguably the most popular hydrogeological flow model, which can be used to predict the underground water movement under both saturated and unsaturated conditions. However, despite its importance for hydrogeological applications, this equation is infamous for being difficult to solve numerically. Indeed, depending on the flow parameters, the resolution of the systems arising after the discretization may become an extremely challenging task, as the linearization schemes such as Picard or Newton’s methods may fail or exhibit unacceptably slow convergence. In this presentation, I will first give a brief overview of Richards’ equation both from the hydrogeological and mathematical perspectives. Then we will discuss the nonlinear preconditioning strategies that can be used to improve the performance of Newton’s method. In this regard, I will present some traditional techniques involving the primary variables substitution as well as some recent ones based on the nonlinear Jacobi or block Jacobi preconditioning. The later family of (block) Jacobi-Newton methods turn out to be a very attractive option as they allow for the global convergence analysis in the framework of the Monotone Newton Theorem.

Lire la suite

High order exponential fitting discretizations for convection diffusion problems

Ludmil Zikatanov: Thursday, 4th May at 11:00 ABSTRACT: We discuss discretizations for convection diffusion equations in arbitrary spatial dimensions. Targeted applications include the Nernst-Plank equations for transport of species in a charged media. We illustrate how such exponentially fitted methods are derived in any spatial dimension. A main step in proving error estimates is showing unisolvence for the quasi-polynomial spaces of differential forms defined as weighted spaces of differential forms with polynomial coefficients. We show that the unisolvent set of functionals for such spaces on a simplex in any spatial dimension is the same as the set of such functionals used for the polynomial spaces. We are able to prove our results without the use of Stokes’ Theorem, which is the standard tool in showing the unisolvence of functionals in polynomial spaces of differential forms. This is joint work with Shuonan Wu (Beijing University).

Lire la suite

23rd March – Marien-Lorenzo Hanot: Polytopal discretization of advanced differential complexes.

Marien-Lorenzo Hanot: Thursday, 23rd March at 11:00 ABSTRACT: We are interested in the discretization of advanced differential complexes. That is to say, complexes presenting higher regularity or additional algebraic constraints compared to the De Rham complex.This type of complex appears naturally in the discretization of many systems of differential equations. For example, the Stokes complex uses the same operators as the De Rham complex. Still, it requires an increased regularity, or the Div-Div complex appears in biharmonic equations and requires the use of fields with values in symmetric or traceless matrices. The principle of polytopal methods is to use discrete functions not belonging to a subset of the continuous functions but are composed of a collection of polynomials defined on objects of any dimension of the mesh (on edges, faces, cells…).This allows using very generic meshes, in our case composed of arbitrary contractible polytopes, while keeping the computability of discrete functions. The objective is to present the construction of a family of discrete 3-dimensional Div-Div complexes for arbitrary polynomial degrees. These complexes are consistent on polynomial functions, which is the basis for obtaining an optimal convergence of the schemes built on them. Moreover, they preserve the algebraic structure of the continuous complex, in the sense that the cohomology of the discrete complex is isomorphic to that of the continuous.

Lire la suite

13th June – Jean-Luc Guermond: Invariant-domain preserving IMEX time stepping methods

Jean-Luc Guermond Thursday 13th June at 11:00   ABSTRACT: I will present high-order time discretizations of a Cauchy problem where the evolution operator comprises a hyperbolic part and a parabolic part (say diffusion and stiff relaxation terms). The said problem is assumed to possess an invariant domain. I will propose a technique that makes every implicit-explicit (IMEX) time stepping scheme invariant domain preserving and mass conservative. The IMEX scheme is written in incremental form and, at each stage of the scheme, we first compute low-order hyperbolic and parabolic updates, followed by their high-order counterparts. The proposed technique, which is agnostic to the space discretization, allows to optimize the time step restrictions induced by the hyperbolic sub-step. To illustrate the proposed methodology, we derive three novel IMEX schemes with optimal efficiency and for which the implicit scheme is singly-diagonal and L-stable: a third-order, four-stage scheme; and two fourth-order schemes, one with five stages and one with six stages. The novel IMEX schemes are evaluated numerically on a stiff ODE system. We also apply these schemes to nonlinear convection-diffusion problems with stiff reaction and to compressible viscous flows possibly including grey radiation.

Lire la suite

16th June – ‪Chérif Amrouche: Elliptic Problems in Lipschitz and in $C^{1,1}$ Domains

Chérif Amrouche Thursday 16th June at 11:30   ABSTRACT: We are interested here in questions related to the maximal regularity of solutions to elliptic problems with Dirichlet or Neumann boundary conditions (see ([1]). For the last 40 years, many works have been concerned with questions when Ω is a Lipschitz domain. Some of them contain incorrect results that are corrected in the present work. We give here new proofs and some complements for the case of the Laplacian (see [3]), the Bilaplacian ([2] and [6]) and the operator div (A∇) (see ([5]) when A is a matrix or a function. And we extend this study to obtain other regularity results for domains having an adequate regularity. We give also new results for the Dirichlet-to-Neumann operator for Laplacian and Bilaplacian. Using the duality method, we can then revisit the work of Lions-Magenes [4], concerning the so-called very weak solutions, when the data are less regular. References : [1]  C. Amrouche and M. Moussaoui. Laplace equation in smooth or non smooth do- mains. Work in Progress. [2]  B.E.J. Dahlberg, C.E. Kenig, J. Pipher and G.C. Verchota. Area integral estimates for higher-order elliptic equations and systems. Ann. Inst. Fourier, 47-5, 1425– 1461, (1997). [3]  D. Jerison and C.E. Kenig. The Inhomogeneous Dirichlet Problem in Lipschitz Domains, J. Funct. Anal. 130, 161–219, (1995). [4]  J.L. Lions and E. Magenes. Probl`emes aux limites non-homog`enes et applications, Vol. 1, Dunod, Paris, (1969). [5]  J. Necas. Direct methods in the theory of elliptic equations. Springer Monographs in Mathematics. Springer, Heidelberg, (2012). [6]  G.C. Verchota. The biharmonic Neumann problem in Lipschitz domains. Acta Math. 194-2, 217–279, (2005).

Lire la suite

20 January – ‪Isabelle Ramiere‬ : Automatic multigrid adaptive mesh refinement with controlled accuracy for quasi-static nonlinear solid mechanics

Isabelle Ramiere‬ Thursday 20th January at 11:00   ABSTRACT: Many real industrial problems involve localized effects (nonlinearity, contact, heterogenity,…). Adaptive Mesh Refinement (AMR) approaches are well-suited numerical techniques to take into account mesoscale phenomena in simulation processes. For implicit solvers (such as for quasi-static mechanics problems), classical h and/or p-adaptive refinement strategies consisting in generating a unique global mesh locally refined (in mesh step and/or in degree of basis function) are limited by the resulting size of problems to be solved (cf. number of DoFs). Hence, we were interested in local multigrid methods, consisting in adding local refined nested meshes in zones of interest without modifying the initial computation mesh. An iterative process (similar to standard multigrid solvers) enables to correct to various levels solutions. We have extended the multigrid Local Defect Correction (LDC) method (Hackbusch, 1984), initially introduced in Computational Fluid Dynamics, to elastostaticity (Barbié et al., 2014) with a multilevel generalization of the algorithm. In order to automatically detect the zone of interest and hence to avoid the pollution error, the LDC method has been coupled with an a posteriori error estimate of Zienckiewicz-Zhu type (Barbié et al., 2014; Barbié et al., 2015; Liu et al., 2017). We also proposed an original stopping criterion in case of local singularity (Ramière et al., 2019). We have compared in (Koliesnikova et al.,2021) within a unified AMR framework the efficiency of the LDC method with respect to conforming and nonconforming h-adaptive strategies. We have also extended the LDC method to structural mechanics nonlinearities. In (Liu et al., 2017), an efficient algorithm has been developed in order to deal with frictional contact via the LDC method. For nonlinear material behaviours, a one time step algorithm has been first introduced in (Barbié et al., 2015) while a fully automatic algorithm in time with…

Lire la suite