(English) A view into the development of the FEniCS project over two decades
Désolé, cet article est seulement disponible en Anglais Américain.
Désolé, cet article est seulement disponible en Anglais Américain.
Désolé, cet article est seulement disponible en Anglais Américain.
Weifeng Qiu: Wednesday, 2nd October at 11:00 Abstract: In this presentation. I will discuss DG type methods for incompressible MHD and Maxwell’s transmission eigenvalues, and ALE for two-phase incompressible Naiver-Stokes flow. I will also discuss possible further works along these directions.
Désolé, cet article est seulement disponible en Anglais Américain.
Gregor Gantner: Thursday, 17th October at 11:00 Abstract: In this talk, we discuss stable space-time FEM-BEM couplings [1] to numerically solve parabolic transmission problems on the full space and a finite time interval.The couplings are based on the space-time FOSLS [2,3] in the interior and the space-time BEM [4] in the exterior.In particular, we demonstrate coercivity of the couplings under certain restrictions and validate our theoretical findings by numerical experiments. REFERENCES [1] T. Führer, G. Gantner, and M. Karkulik, Space-time FEM-BEM couplings for parabolic transmission problems, Preprint, arXiv:2409.14449 (2024). [2] T. Führer and M. Karkulik, Space–time least-squares finite elements for parabolic equations, Comput. Math. Appl., 92 (2021), pp. 27–36. [3] G. Gantner and R. Stevenson, Further results on a space-time FOSLS formulation of parabolic PDEs, ESAIM Math. Model. Numer. Anal., 55 (2021), pp. 283–299. [4] M. Costabel, Boundary integral operators for the heat equation, Integral Equations Operator Theory, 13 (1990), pp. 498–552.
Désolé, cet article est seulement disponible en Anglais Américain.
Carsten Carstensen: Monday, 10th September at 11:00 Abstract: The popular (piecewise) quadratic schemes for the fourth-order plate bending problems based on triangles are the nonconforming Morley finite element, two discontinuous Galerkin, the C0 interior penalty, and the WOPSIP schemes. The first part of the presentation discusses recent applications to the linear bi-Laplacian and to semi-linear fourth-order problems like the stream function vorticity formulation of incompressible 2D Navier-Stokes problem and the von Kármán plate bending problem. The role of a smoother is emphasised and reliable and efficient a posteriori error estimators give rise to adaptive mesh-refining strategies that recover optimal rates in numerical experiments. The last part addresses recent developments on adaptive multilevel Argyris finite element methods. The presentation is based on joint work with B. Gräßle, (Humboldt) and N. Nataraj (IITB, Mumbai) partly reflected in the references below. REFERENCES [1] C. Carstensen, B. Gräßle,, and N. Nataraj. Unifying a posteriori error analysis of five piecewise quadratic discretisations for the biharmonic equation, J. Numer. Math., volume 32, pp. 77–109, 2024, arXiv:2310.05648. [2] C. Carstensen, B. Gräßle,, and N. Nataraj. A posteriori error control for fourth-order semilinear problems with quadratic nonlinearity, SIAM J. Numer. Anal., volume 62, pp. 919–945, 2024. [3] C. Carstensen, Jun Hu. Hierarchical Argyris finite element method for adaptive and multigrid algorithms, Comput. Methods Appl. Math., volume 21, pp. 529–556, 2021. [4] C. Carstensen, N. Nataraj. A Priori and a Posteriori Error Analysis of the Crouzeix–Raviart and Morley FEM with Original and Modified Right-Hand Sides, Comput. Methods Appl. Math., volume 21, pp. 289–315, 2021. [5] C. Carstensen, N. Nataraj, G.C. Remesan, D. Shylaja. Lowest-order FEM for fourth-order semi-linear problems with trilinear nonlinearity, Numerische Mathematik 154, pp. 323–368, 2023. [6] C. Carstensen, N. Nataraj. Lowest-order equivalent nonstandard finite element methods for biharmonic plates, ESAIM: Mathematical Modelling and Numerical Analysis, 56(1),…
Désolé, cet article est seulement disponible en Anglais Américain.
Martin Licht: Thursday, 25th April at 11:00 Abstract: We derive computable and reliable upper bounds for Poincaré–Friedrichs constants of classical Sobolev spaces and, more generally, Sobolev de-Rham complexes. The upper bounds are in terms of local Poincaré–Friedrichs constants over subdomains and the smallest singular value of a finite-dimensional operator that is easily assembled from the geometric setting. Thus we reduce the computational effort when computing the Poincaré–Friedrichs constant of finite de-Rham complexes, and we provide computable reliable bounds even for the original Sobolev de-Rham complex. The reduction to a finite-dimensional system uses diagram chasing within a Čech–de-Rham complex.
Désolé, cet article est seulement disponible en Anglais Américain.