On the preconditioned Newton’s method for Richards’ equation

Konstantin Brenner: Thursday, 11th May at 11:00 ABSTRACT: Richards’ equation is arguably the most popular hydrogeological flow model, which can be used to predict the underground water movement under both saturated and unsaturated conditions. However, despite its importance for hydrogeological applications, this equation is infamous for being difficult to solve numerically. Indeed, depending on the flow parameters, the resolution of the systems arising after the discretization may become an extremely challenging task, as the linearization schemes such as Picard or Newton’s methods may fail or exhibit unacceptably slow convergence. In this presentation, I will first give a brief overview of Richards’ equation both from the hydrogeological and mathematical perspectives. Then we will discuss the nonlinear preconditioning strategies that can be used to improve the performance of Newton’s method. In this regard, I will present some traditional techniques involving the primary variables substitution as well as some recent ones based on the nonlinear Jacobi or block Jacobi preconditioning. The later family of (block) Jacobi-Newton methods turn out to be a very attractive option as they allow for the global convergence analysis in the framework of the Monotone Newton Theorem.

Continue reading

High order exponential fitting discretizations for convection diffusion problems

Ludmil Zikatanov: Thursday, 4th May at 11:00 ABSTRACT: We discuss discretizations for convection diffusion equations in arbitrary spatial dimensions. Targeted applications include the Nernst-Plank equations for transport of species in a charged media. We illustrate how such exponentially fitted methods are derived in any spatial dimension. A main step in proving error estimates is showing unisolvence for the quasi-polynomial spaces of differential forms defined as weighted spaces of differential forms with polynomial coefficients. We show that the unisolvent set of functionals for such spaces on a simplex in any spatial dimension is the same as the set of such functionals used for the polynomial spaces. We are able to prove our results without the use of Stokes’ Theorem, which is the standard tool in showing the unisolvence of functionals in polynomial spaces of differential forms. This is joint work with Shuonan Wu (Beijing University).

Continue reading

23rd March – Marien-Lorenzo Hanot: Polytopal discretization of advanced differential complexes.

Marien-Lorenzo Hanot: Thursday, 23rd March at 11:00 ABSTRACT: We are interested in the discretization of advanced differential complexes. That is to say, complexes presenting higher regularity or additional algebraic constraints compared to the De Rham complex.This type of complex appears naturally in the discretization of many systems of differential equations. For example, the Stokes complex uses the same operators as the De Rham complex. Still, it requires an increased regularity, or the Div-Div complex appears in biharmonic equations and requires the use of fields with values in symmetric or traceless matrices. The principle of polytopal methods is to use discrete functions not belonging to a subset of the continuous functions but are composed of a collection of polynomials defined on objects of any dimension of the mesh (on edges, faces, cells…).This allows using very generic meshes, in our case composed of arbitrary contractible polytopes, while keeping the computability of discrete functions. The objective is to present the construction of a family of discrete 3-dimensional Div-Div complexes for arbitrary polynomial degrees. These complexes are consistent on polynomial functions, which is the basis for obtaining an optimal convergence of the schemes built on them. Moreover, they preserve the algebraic structure of the continuous complex, in the sense that the cohomology of the discrete complex is isomorphic to that of the continuous. .

Continue reading

Parameter studies automation with Prune_rs

Simon Legrand: Thursday 2nd February at 11:00 ABSTRACT: While essential in most scientific fields, parameter studies can be tedious and error-prone if they are not led with proper tools. Prune_rs (Prune in Rust) is a tool/language aimed at easily describing complex parameter spaces and automatizing the execution of commands over each parameter combination. It also offers the user predefined patterns to store results and simplifies postprocessing. Prune_rs is an ongoing development process and we would be glad to discuss your suggestions to make it better!

Continue reading

9th February – Roland Maier: Semi-explicit time discretization schemes for elliptic-parabolic problems

Roland Maier: Thursday 9th February at 11:00 ABSTRACT: This talk is about semi-explicit time-stepping schemes for coupled elliptic-parabolic problems as they arise, for instance, in the context of poroelasticity. If the coupling between the equations is rather weak, such schemes may be applied. Their main advantage is that they decouple the equations and therefore allow for faster computations. Theoretical convergence results are presented that rely on a close connection of the semi-explicit schemes to partial differential equations that include delay terms. Numerical experiments confirm the theoretical findings.

Continue reading

17th November – Fabio Vicini: Flow simulations on porous fractured media: a small numerical overview from my perspective

Fabio Vicini Thursday 17th Nov at 11:00 ABSTRACT: The presentation will focus on some numerical aspects of the simulations of porous-fractured media I have experienced so far. Flow simulations on porous fractured media contain many numerical challenging issues related to complex geometries and the severe size of the computational domain. In real applications, indeed, the network of fractures immersed in the rock matrix is usually generated according to known probabilistic distributions, which lead to a huge number of fractures with a multi-scale distribution in sizes. For these reasons, tailored numerical methods are s to overcome these problems and for efficient handling of the computational resources. I will show two different approaches to tackle the classic Darcy single-phase problem with the Discrete Fracture Networks (DFNs) model: one related to a constrained optimization problem and the second related to the modern Virtual Element (VEM) framework. Moreover, I will present the possibility of investigating the Darcy problem on DFNs as a parameterized differential problem with a Reduced Basis (RB) technique combined with a-posteriori error control. Finally, I will discuss the possibility of extending the VEM approach for the simulation of a two-phase flow of immiscible fluids.

Continue reading

28th November – Xuefeng Liu: Guaranteed eigenfunction computation and its application to shape optimization problems

Xuefeng Liu Monday 28th Nov at 11:00   ABSTRACT: We are concerned with the guaranteed computation of the eigenfunction (or eigenspace) of differential operators. Upon the setting of eigenvalue problems, three algorithms are proposed to give rigorous and efficient error estimation for the approximate eigenfunctions: Algorithm I: Rayleigh quotient error based algorithm; Algorithm II: Variational residual error based algorithm; Algorithm III: Projection error based algorithm. The guaranteed eigenfunction computation is applied to solving shape optimization problems. For example, the minimization of the Laplacian eigenvalue over polygonal domains. By explicitly evaluating the Hadamard shape derivative with guaranteed computation of both eigenvalues and eigenfunctions, we provide a computer-assisted proof to declare that the equilateral triangle minimizes the first Laplacian under certain non-homogeneous Neumann boundary condition under the radius constraint condition. References: 1. R. Endo and X. Liu, Shape optimization for the Laplacian eigenvalue over triangles and its application to interpolation error constant estimation, https://arxiv.org/abs/2209.13415. 2. X. Liu and T. Vejchodsky, Projection error-based guaranteed L2 error bounds for finite element approximations of Laplace eigenfunctions, https://arxiv.org/abs/2211.03218. 3.X. Liu and T. Vejchodsky, Fully computable a posteriori error bounds for eigenfunctions, Numer. Math. 152 (2022), 183–221.

Continue reading

20th October – Iuliu Sorin Pop: Non-equilibrium models for flow in porous media

Iuliu Sorin Pop Thursday 20th Oct at 10:00   ABSTRACT: We discuss various aspects related to non-equilibrium mathematical models for porous media flow. Typically, such models assume that quantities like saturation, phase pressure differences, or relative permeability are related by monotone, algebraic relationships. Under such assumptions, the solutions satisfy the maximum principle. On the other hand, experimental work published in the past decades report that phenomena like saturation overshoot, or the formation of finger profiles have been observed whenever the flow is sufficiently rapid. Such results are ruled out by standard, equilibrium models. This is the main motivation to consider non-equilibrium models, where dynamic or hysteretic effects are included in the above-mentioned relationships. The resulting models are nonlinear evolution systems of (pseudo-)parabolic and possibly degenerate equations, and involving differential inclusions. For such problems, we present first some results concerning the derivation of such models from the pore scale to the Darcy scale, the existence and uniqueness of weak solutions, and discuss different numerical schemes. This includes aspects like the rigorous convergence of the discretization, and solving the emerging nonlinear time-discrete or fully discrete problems. This is joint work with X. Cao (Toronto), S. Karpinski (Munich), S. Lunowa (Munich), K. Mitra (Hasselt), F.A. Radu (Bergen)

Continue reading

06th October – Rekha Khot: Nonconforming virtual elements for the biharmonic equation with Morley degrees of freedom on polygonal meshes

Rekha Khot Thursday 06th Oct at 15:00   ABSTRACT: The lowest-order nonconforming virtual element extends the Morley triangular element to polygons for the approximation of the weak solution $u \in  V := H_0^2(Ω)$ to the biharmonic equation. Two nonconforming virtual element spaces have been introduced in [1, 4] for $H^3$ regular solutions, while a medius analysis in [3] allows minimal regularity. In this talk, we will discuss an abstract framework (cf. [2]) with two hypotheses (H1)-(H2) for unified stability and a priori error analysis of at least two different discrete spaces (even a mixture of those). A smoother J allows rough source terms $F \in V^∗ = H^{−2}(\Omega)$. The a priori and a posteriori error analysis circumvents any trace of second derivatives by a computable conforming companion operator $J : V_h \rightarrow V$ from the nonconforming virtual element space $V_h$. The operator J is a right-inverse of the interpolation operator and leads to optimal error estimates in piecewise Sobolev norms without any additional regularity assumptions on $$u \in V$$. As a smoother the companion operator modifies the discrete right-hand side and then allows a quasi-best approximation. An explicit residual-based a posteriori error estimator is reliable and efficient up to data oscillations. Numerical examples display the predicted empirical convergence rates for uniform and optimal convergence rates for adaptive mesh-refinement. [1] P. F. Antonietti, G. Manzini, and M. Verani, The fully nonconforming virtual element method for biharmonic problems, Math. Models Methods Appl. Sci., 28 (2018), pp. 387–407. [2] C. Carstensen, R. Khot, and A. K. Pani, Nonconforming virtual elements for the biharmonic equation with Morley degrees of freedom on polygonal meshes, arXiv:2205.08764, (2022). [3] J. Huang and Y. Yu, A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations, J. Comput. Appl. Math., 386 (2021), p. 21. [4] J. Zhao, B. Zhang,…

Continue reading

21th September – Alexandre IMPERIALE: Numerical methods for time domain wave propagation problems applied to ultrasonic testing modelling

Alexandre IMPERIALE Wednesday 21th Sep at 15:00   ABSTRACT: The Department of Imaging and Simulation for Control (DISC) at CEA – LIST is dedicated to developing Non-Destructive Testing (NDT) methods in advanced industrial contexts (e.g. nuclear energy, aeronautic, or petrochemical industries). Amongst different testing modalities, Ultrasonic Testing (UT) is widespread and plays a major role in numerous industrial processes. It relies on the propagation of mechanical waves in order to probe critical specimens, often formed with complex media – in terms of geometry or material properties. To fully understand the capabilities and performances of UT experiments, the DISC is developing modelling tools for wave propagation, which are bound to incorporate the CIVA platform [1] – a commercial software dedicated to NDT modelling. When commercializing modelling tools, efficiency and robustness are key features. This talk focuses on numerical methods for wave propagation problems that address these challenges. In particular, we show how the combination of Spectral Finite Elements [2] with the Mortar Element method [3] – a domain decomposition approach – can be tuned to render efficient and robust algorithms [4]. Coupled with high-frequency asymptotic methods [5] (e.g. ray-based algorithms), this combination forms the basis of various advances in the CIVA platform. This approach is typically used to modelling UT experiments relying on bulk wave propagation, e.g. for testing welds (typical nuclear energy industry applications) or composite materials [6] (typical aeronautic industry applications). Additionally, we present some details on ongoing works related to other UT configurations, such as numerical modelling of wave propagation through thin layers – based on effective transmission conditions – or within plate-like geometries – achieved through dedicated time schemes. [1] http://www.extende.com/civa-in-a-few-words [2] Cohen, G. C. “Higher-order numerical methods for transient wave equations”. Berlin: Springer, 2002 Vol. 5. [3] F. Ben Belgacem, Y. Maday, “The mortar element method…

Continue reading