January 5th – Agnieszka Miedlar: Moving eigenvalues and eigenvectors by simple perturbations

Agnieszka Miedlar: Thursday 8 December at 3pm, A415 Inria Paris. Abstract: In the context of iterative solvers moving the eigenvalue or the eigenpair may be of particular importance in several cases, e.g., deflation techniques, increasing the spectral gap or determining the set of linearly independent eigenvectors. It can also be used for reducing the imaginary parts of the eigenvalues without chainging the matrix exponential; this can enhance the computation of $\exp(A)$. Exploiting the classical perturbation analysis for eigenvalue problems [Golub and Van Loan 2012] we study the following problem.

Lire la suite

December 8th – Luca Formaggia: Hybrid dimensional Darcy flow in fractured porous media, some recent results on mimetic discretization

Luca Formaggia: Thursday 8 December at 3pm, A415 Inria Paris. Fractures can alter greatly the characteristics of porous media. Their diverse scale distribution makes it often impossible to resort to averaging or homogenisation techniques to account for their presence. Thus, different models have been devised to account for the presence of fractures in porous media explicitly. We here present the general problem, together with a recent result of well-posedness for an hybrid dimensional mixed formulation of Darcy flow in fractured porous media, and an analysis of a mimetic finite difference scheme adopted for its numerical solution.

Lire la suite

(English) Internal Seminar: Paola Antonietti

Jeudi 22 Septembre, a 15h, salle Jacques Louis Lions, Inria Paris. Paola ANTONIETTI: Fast solution techniques for high order Discontinuous Galerkin methods We present two-level and multigrid algorithms for the efficient solution of the linear system of equations arising from high-order discontinuous Galerkin discretizations of second-order elliptic problems. Starting from the classical framework in geometric multigrid analysis, we define a smoothing and an approximation property, which are used to prove uniform convergence of the resulting multigrid schemes with respect to the discretization parameters and the number of levels, provided the number of smoothing steps is chosen sufficienly large.  A discussion on the effects of employing inherited or noninherited sublevel solvers is also presented as well the extension of the proposed techniques to agglomeration-based multigrid solvers. Numerical experiments confirm the theoretical results.

Lire la suite

19 Nov. 2015 – Géraldine Pichot: Algorithmes de génération de champs aléatoires Gaussiens stationnaires

Séminaire interne de l’équipe SERENA, Jeudi 19 Novembre 2015, 16h à 17h, Batiment 13: Géraldine Pichot: Algorithmes de génération de champs aléatoires Gaussiens stationnaires Résumé: Les équations gouvernant les phénomènes d’écoulement et de transport en milieux géologiques font intervenir des coefficients physiques caractérisant ces milieux, tels que la  perméabilité et la porosité. Devant l’impossibilité d’imager précisément les milieux géologiques, ces paramètres sont classiquement modélisées par des champs aléatoires Gaussiens stationnaires dont les paramètres sont données par l’expérimentation. Dans l’objectif d’étudier l’impact de la variabilité de ces coefficients sur les phénomènes étudiés, il est nécessaire de générer un grand nombre de ces champs aléatoires. Un algorithme de simulation efficace est alors nécessaire. Dans cet exposé, je présenterai différents algorithmes de simulations basés sur l’approche classique de « circulant embedding » permettant de générer de tels champs sur une grille régulière. La parallélisation de ces algorithmes sera discutée. Je présenterai également quelques résultats de simulations pour différentes fonctions de covariance. Ce travail est effectué en collaboration avec Jocelyne Erhel et Mestapha Oumouni (INRIA, Rennes).

Lire la suite

5 Nov. 2015 – Iain Smears: Préconditionneurs robustes et efficaces pour la méthode Galerkine discontinue temporelle

Séminaire interne de l’équipe SERENA, Jeudi 5 Novembre 2015, 16h à 17h, Batiment 13: Iain Smears: Préconditionneurs robustes et efficaces pour la méthode Galerkine discontinue temporelle Résumé: La méthode Galerkine discontinue temporelle possède de nombreuses qualités avantageuses pour la résolution d’équations paraboliques. En revanche, son application en pratique a été limité par le problème que pose la résolution des larges systèmes linéaires nonsymmetriques encontrés à chaque pas de temps. Nous proposons une stratégie de preconditionnement robuste et efficace pour résoudre ces systèmes. Dans un premier temps, nous construisons un préconditionneur basé sur la théorie inf-sup qui tel que le système transformé est symmetrique et positive, pouvant alors être résolu par la méthode de gradients conjugés (PCG). Ensuite, nous prouvons que le systeme transformé peut être préconditionné avec un nombre de conditionnement κ borné par 4 for tout pas de temps, tout ordre d’approximation et pour tous opérateurs spatiaux symmetriques. Les résultats numériques démontrent la rapidité de convergence de l’algorithme pour des préconditionneurs idéaux ou approximés, permettant la résolution des larges systèmes associés aux méthodes d’ordre supérieur.

Lire la suite