Joscha Gedicke: Thursday 1 June at 10 am, A415 Inria Paris.
We extend the Hodge decomposition approach for the cavity problem of two-dimensional time harmonic Maxwell’s equations to include the impedance boundary condition, with anisotropic electric permittivity and sign changing magnetic permeability. We derive error estimates for a P_1 finite element method based on the Hodge decomposition approach and develop a residual type a posteriori error estimator. We show that adaptive mesh refinement leads empirically to smaller errors than uniform mesh refinement for numerical experiments that involve metamaterials and electromagnetic cloaking. The well-posedness of the cavity problem when both electric permittivity and magnetic permeability can change sign is also discussed and verified for the numerical approximation of a flat lens experiment.