Stabilisation of the high-order discretised wave equation for data assimilation problems

Sébastien Imperiale: Thursday, 16th Oct 2025 – 10h30 to 12h00 Abstract: The objective of this work is to propose and analyze numerical schemes to solve transient wave propagation problems that are exponentially stable (i.e. the solution decays to zero exponentially fast). Applications are in data assimilation strategies or the discretisation of absorbing boundary conditions. More precisely the aim of our work is to propose a discretization process that enables to preserve the exponential stability at the discrete level as well as a high order consistency when using a high-order finite element approximation. The main idea is to add to the wave equation a stabilizing term which damps the high-frequency oscillating components of the solutions such as spurious waves. This term is built from a discrete multiplier analysis that proves the exponential stability of the semi-discrete problem at any order without affecting the order of convergence.

Lire la suite

Hybrid high-order methods for the wave equation in first-order form

Rekha Khot: Thursday, 20th March 2025 at 10:30 Abstract: In this talk, we will discuss the approximation of the acoustic wave equation in its first-order Friedrichs formulation using hybrid high-order (HHO) methods, proposed and numerically investigated in [Burman-Duran-Ern, 2022]. We first look at energy-error estimates in the time-continuous setting and give several examples of interpolation operators: the classical one in the HHO literature based on L2 orthogonal projections and others from, or inspired from, the hybridizable discontinuous Galerkin (HDG) literature giving improved convergence rates on simplices. The time-discrete setting is based on explicit Runge-Kutta (ERK) schemes in time combined with HHO methods in space. In the fully discrete analysis, the key observation is that it becomes crucial to bound the consistency error in space by means of the stabilization seminorm only. We formulate three abstract properties (A1)-(A3) to lead the analysis. Our main result proves that, under suitable CFL conditions for second- and third-order ERK schemes, the energy error converges optimally in time and quasi-optimally in space, with optimal rates recovered on simplicial meshes. The abstract foundations of our analysis should facilitate its application to other nonconforming hybrid methods such as HDG and weak Galerkin (WG) methods.

Lire la suite

Iterative solvers and optimal complexity of adaptive finite element methods

Ani Miraci: Tuesday, 17th December at 11:00 Finite element methods (FEMs) are often used to discretize second-order elliptic partial differential equations (PDEs). While standard FEMs rely on underlying uniform meshes, adaptive FEMs (AFEMs) drive the local mesh-refinement to capture potential singularities of the (unknown) PDE solution (stemming, e.g., from the data or the domain geometry). Crucially, adaptivity is steered by reliable a posteriori error control, often encoded in the paradigm SOLVE — ESTIMATE — MARK — REFINE. AFEMs allow to obtain optimal rates of convergence with respect to the number of degrees of freedom (an improvement to standard FEMs). However, in terms of computational costs, an adaptive algorithm is inherently cumulative in nature: an initial coarse mesh is used as input and exact finite element solutions need to be computed on consecutively refined meshes before a desired accuracy can be ensured. Thus, in practice, one strives instead to achieve optimal complexity, i.e., optimal rate of convergence with respect to the overall computational cost. The core ingredient needed for optimal complexity consists in the use of appropriate iterative solvers to be integrated as the SOLVE module within the adaptive algorithm. More precisely, one requires:(i) a solver whose each iteration is: (a) of linear complexity and (b) contractive;(ii) a-posteriori-steered solver-stopping criterion which allows to discern and balance discretization and solver error;(iii) nested iteration, i.e., the last computed solver-iterate is used as initial guess in the newly-refined mesh. First, we develop an optimal local multigrid for the context of symmetric linear elliptic second order PDEs and a finite element discretization with a fixed polynomial degree p and a hierarchy of bisection-generated meshes with local size h. The solver contracts the algebraic error hp-robustly and comes with a built-in a posteriori estimator equivalent to the algebraic error.Second, the overall adaptive algorithm is then shown…

Lire la suite

𝐻² conforming virtual element discretization of nondivergence form elliptic equations

Guillaume Bonnet: Thursday, 21st November at 11:00 The numerical discretisation of elliptic equations in nondivergence form is notoriously challenging, due to the lack of a notion of weak solutions based on variational principles. In many cases, there still is a well-posed variational formulation for such equations, which has the particularity of being posed in 𝐻², and therefore leads to a strong solution. Galerkin discretizations based on this formulation have been studied in the literature. Since 𝐻² conforming finite elements tend to be considered impractical, most of these discretizations are of discontinuous Galerkin type. On the other hand, it has been observed in the virtual element literature that the virtual element method provides a practical way to build 𝐻² conforming discretizations of variational problems. In this talk, I will describe a virtual element discretization of equations in nondivergence form. I will start with a simple linear model problem, and show how the 𝐻² conformity of the method allows for a particularly simple well-posedness and error analysis. I will then discuss the extension to equations with lower-order terms and with Hamilton-Jacobi-Bellman type nonlinearities, and present some numerical results.

Lire la suite

Space-time FEM-BEM couplings for parabolic transmission problems

Gregor Gantner: Thursday, 17th October at 11:00 Abstract: In this talk, we discuss stable space-time FEM-BEM couplings [1] to numerically solve parabolic transmission problems on the full space and a finite time interval.The couplings are based on the space-time FOSLS [2,3] in the interior and the space-time BEM [4] in the exterior.In particular, we demonstrate coercivity of the couplings under certain restrictions and validate our theoretical findings by numerical experiments. REFERENCES [1] T. Führer, G. Gantner, and M. Karkulik, Space-time FEM-BEM couplings for parabolic transmission problems, Preprint, arXiv:2409.14449 (2024). [2] T. Führer and M. Karkulik, Space–time least-squares finite elements for parabolic equations, Comput. Math. Appl., 92 (2021), pp. 27–36. [3] G. Gantner and R. Stevenson, Further results on a space-time FOSLS formulation of parabolic PDEs, ESAIM Math. Model. Numer. Anal., 55 (2021), pp. 283–299. [4] M. Costabel, Boundary integral operators for the heat equation, Integral Equations Operator Theory, 13 (1990), pp. 498–552.

Lire la suite

Computable reliable bounds for Poincaré–Friedrichs constants via Čech–de-Rham complexes

Martin Licht: Thursday, 25th April at 11:00 Abstract: We derive computable and reliable upper bounds for Poincaré–Friedrichs constants of classical Sobolev spaces and, more generally, Sobolev de-Rham complexes. The upper bounds are in terms of local Poincaré–Friedrichs constants over subdomains and the smallest singular value of a finite-dimensional operator that is easily assembled from the geometric setting. Thus we reduce the computational effort when computing the Poincaré–Friedrichs constant of finite de-Rham complexes, and we provide computable reliable bounds even for the original Sobolev de-Rham complex. The reduction to a finite-dimensional system uses diagram chasing within a Čech–de-Rham complex.

Lire la suite

A localized orthogonal decomposition strategy for hybrid discontinuous Galerkin methods

Roland Maier: Thursday, 4th April at 11:00 Abstract: We formulate and analyze a multiscale method for an elliptic problem with an oscillatory coefficient based on a skeletal (hybrid) formulation. More precisely, we employ hybrid discontinuous Galerkin approaches and combine them with the localized orthogonal decomposition methodology to obtain a coarse-scale skeletal method that effectively includes fine-scale information. This work is a first step to reliably merge hybrid skeletal formulations and localized orthogonal decomposition and unite the advantages of both strategies. Numerical experiments are presented to illustrate the theoretical findings.

Lire la suite

A posteriori error estimates robust with respect to nonlinearities and final time.

Martin Vohralík: Thursday, 25th May at 11:00 ABSTRACT: A posteriori estimates enable us to certify the error committed in a numerical simulation. In particular, the equilibrated flux reconstruction technique yields a guaranteed error upper bound, where the flux obtained by local postprocessing is of independent interest since it is always locally conservative. In this talk, we tailor this methodology to model nonlinear and time-dependent problems to obtain estimates that are robust, i.e., of quality independent of the strength of the nonlinearities and the final time. These estimates include and build on common iterative linearization schemes such as Zarantonello, Picard, Newton, or M- and L-ones. We first consider steady problems and conceive two settings: we either augment the energy difference by the discretization error of the current linearization step, or we design iteration-dependent norms that feature weights given by the current iterate. We then turn to unsteady problems. Here we first consider the linear heat equation and finally move to the Richards one, which is doubly nonlinear and exhibits both parabolic–hyperbolic and parabolic–elliptic degeneracies. Robustness with respect to the final time and local efficiency in both time and space are addressed here. Numerical experiments illustrate the theoretical findings all along the presentation.

Lire la suite