January 31 – Camilla Fiorini: Sensitivity analysis for hyperbolic PDEs systems with discontinuous solution: the case of the Euler Equations.

Camilla Fiorini: Thursday 31 January at 14:30, A415 Inria Paris. Sensitivity analysis (SA) is the study of how changes in the input of a model affect the output. Standard SA techniques for PDEs, such as the continuous sensitivity equation method, call for the differentiation of the state variable. However, if the governing equations are hyperbolic PDEs, the state can be discontinuous and this generates Dirac delta functions in the sensitivity. We aim at defining and approximating numerically a system of sensitivity equations which is valid also when the state is discontinuous: to do that, one can define a correction term to be added to the sensitivity equations starting from the Rankine-Hugoniot conditions, which govern the state across a shock. We detail this procedure in the case of the Euler equations. Numerical results show that the standard Godunov and Roe schemes fail in producing good numerical results because of the underlying numerical diffusion. An anti-diffusive numerical method is then successfully proposed.

Continue reading

February 7 – Gregor Gantner: Optimal adaptivity for isogeometric finite and boundary element methods

Gregor Gantner: Thursday 7 February at 11 am, A415 Inria Paris. The CAD standard for spline representation in 2D or 3D relies on tensor-product splines. To allow for adaptive refinement, several extensions have emerged, e.g., analysis-suitable T-splines, hierarchical splines, or LR-splines. All these concepts have been studied via numerical experiments, but there exists only little literature concerning the thorough analysis of adaptive isogeometric methods. The work [1] investigates linear convergence of the weighted-residual error estimator (or equivalently: energy error plus data oscillations) of an isogeometric finite element method (IGAFEM) with truncated hierarchical B-splines. Optimal convergence was indepen- dently proved in [2, 3]. In [3], we employ hierarchical B-splines and propose a refinement strategy to generate a sequence of refined meshes and corresponding discrete solutions. Usually, CAD provides only a parametrization of the boundary ∂Ω instead of the domain Ω itself. The boundary element method, which we consider in the second part of the talk, circumvents this difficulty by working only on the CAD provided boundary mesh. In 2D, our adaptive algorithm steers the mesh-refinement and the local smoothness of the ansatz functions. We proved linear convergence of the employed weighted-residual estimator at optimal algebraic rate in [5, 6]. In 3D, we consider an adaptive IGABEM with hierarchical splines and prove linear convergence of the estimator at optimal rate; see [6]. REFERENCES [1] A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: error estimator and convergence. Math. Mod. Meth. Appl. S., Vol. 26, 2016. [2] A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates. Math. Mod. Meth. in Appl. S., Vol. 27, 2017. [3] G. Gantner, D. Haberlik, and Dirk Praetorius, Adaptive IGAFEM with optimal con- vergence rates: Hierarchical B-splines. Math. Mod. Meth. in Appl. S., Vol. 27, 2017. [4] G. Gantner, Adaptive…

Continue reading