TAckling the Under-specified

Building upon the expertise in machine learning (ML) and stochastic optimization of the former TAO project-team, the TAU team aims to tackle the vagueness of the Big Data purposes. Based on the claim that (sufficiently) big data can to some extent compensate for the lack of knowledge, Big Data is hoped to fulfill all Artificial Intelligence commitments.

This makes Big Data under-specified in three respects:

  • A first source of under-specification is related to common sense, and the gap between observation and interpretation. The acquired data do not report on “obvious” issues; still, obvious issues are not necessarily so for the computer. Providing the machine with common sense is a many-faceted, AI hard, challenge. A current challenge is to interpret the data and cope with its blind zones (e.g., missing values, contradictory examples, …).
  • A second source of under-specification regards the steering of a Big Data system. Such systems commonly require lifelong learning in order to deal with open environments and users with diverse profiles, expertises and expectations. A Big Data system thus is a dynamic process, whose behavior will depend in a cumulative way upon its future environment. The challenge regards the control of a lifelong learning system.
  • A third source of under-specification regards its social acceptability. There is little doubt that Big Data can pave the way for Big Brother, and ruin the social contract through modeling benefits and costs at the individual level. What are the fair trade-offs between safety, freedom and efficiency ? We do not know the answers. A first practical and scientific challenge is to assess the fairness of a solution.

Team Assistant: Julienne[dot]Moukalou[at]inria[dot]fr +33 (0)1 69 15 34 71
Team Leaders:
Marc[dot]Schoenauer[at]inria[dot]fr and Michele[dot]Sebag[at]lri[dot]fr 

Visiting us

Team members as of June 2018

Comments are closed.