Jean-Dominique Favreau: Stochastic approaches for Vector Graphics

Jean-Dominique will give a talk on Friday 26th of January from 10:30 to 11:30 in Byron Beige

Title: stochastic approaches for vector graphics


I will present a method to create vector cliparts from photographs. Our approach aims at reproducing two key properties of cliparts: they should be easily editable, and they should represent image content in a clean, simplified way. We observe that vector artists satisfy both of these properties by modeling cliparts with linear color gradients, which have a small number of parameters and approximate well smooth color variations. In addition, skilled artists produce intricate yet editable artworks by stacking multiple gradients using opaque and semi-transparent layers. Motivated by these observations, our goal is to decompose a bitmap photograph into a stack of layers, each layer containing a vector path filled with a linear color gradient. We cast this problem as an optimization that jointly assigns each pixel to one or more layer and finds the gradient parameters of each layer that best reproduce the input. Since a trivial solution would consist in assigning each pixel to a different, opaque layer, we complement our objective with a simplicity term that favors decompositions made of few, semi-transparent layers. However, this formulation results in a complex combinatorial problem combining discrete unknowns (the pixel assignments) and continuous unknowns (the layer parameters). We propose a Monte Carlo Tree Search algorithm that efficiently explores this solution space by leveraging layering cues at image junctions. We demonstrate the effectiveness of our method by reverse-engineering existing cliparts and by creating original cliparts from studio photographs.

I will also introduce Delaunay Point Processes, a framework for the extraction of geometric structures from images. Our approach simultaneously locates and groups geometric primitives (line segments, triangles) to form extended structures (line networks, polygons) for a variety of image analysis tasks. Similarly to traditional point processes, our approach uses Markov Chain Monte Carlo to minimize an energy that balances fidelity to the input image data with geometric priors on the output structures. However, while existing point processes struggle to model structures composed of inter-connected components, we propose to embed the point process into a Delaunay triangulation, which provides high-quality connectivity by construction. We further leverage key properties of the Delaunay triangulation to devise a fast Markov Chain Monte Carlo sampler. We demonstrate the flexibility of our approach on a variety of applications, including line network extraction, object contouring, and mesh-based image compression.