Associate Team presentation

The SWAGR Associate Team is part of the Inria@SiliconValley program, and aims at bringing together a statistical workforce for advanced genomics using RNAseq.

Research Objective

SWAGR brings together the expertise of:

in an effort to improve RNAseq data analysis methods by developing a flexible, robust, and mathematically principled framework for detecting differential gene expression.


Gene expression, measured through the RNAseq technology, has the potential of revealing deep and complex biological mechanisms underlying human health. However, there is currently a critical limitation in widely adopted approaches for the analysis of such data, as edgeR, DESeq2 and limma-voom can all be shown to fail to control the type-I error, leading to an inflation of false positives in analysis results. This problem is exacerbated when studying single-cell RNA-seq data where sample sizes are much larger due to the finer cellular resolution. False positives are an important issue in all of science. In particular in biomedical research when costly studies are failing to reproduce earlier results, this is a pressing issue.

Scientific achievements

Research directions

  • develop a rigorous statistical framework modeling complex transcriptomic studies using RNAseq, including bulk and single-cell studies
  • implement an open-source software as a Bioconductor R package, and a user friendly web-application will be made available to help dissemination
  • analyze clinical studies to yield significant biological results, in particular in vaccine trials