SEMINARS

Events in November–December 2024

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
October 28, 2024
October 29, 2024
October 30, 2024
October 31, 2024

November

November 1, 2024
November 2, 2024
November 3, 2024
November 4, 2024
November 5, 2024
November 6, 2024
November 7, 2024
November 8, 2024
November 9, 2024
November 10, 2024
November 11, 2024
November 12, 2024
November 13, 2024
November 14, 2024
November 15, 2024
November 16, 2024
November 17, 2024
November 18, 2024
November 19, 2024
November 20, 2024
November 21, 2024
November 22, 2024
November 23, 2024
November 24, 2024
November 25, 2024
November 26, 2024
November 27, 2024
November 28, 2024
November 29, 2024
November 30, 2024

December

December 1, 2024
December 2, 2024
December 3, 2024
December 4, 2024
December 5, 2024
December 6, 2024
December 7, 2024
December 8, 2024
December 9, 2024
December 10, 2024
December 11, 2024
December 12, 2024
December 13, 2024
December 14, 2024
December 15, 2024
December 16, 2024
December 17, 2024
December 18, 2024
December 19, 2024
December 20, 2024
December 21, 2024
December 22, 2024
December 23, 2024
December 24, 2024
December 25, 2024
December 26, 2024
December 27, 2024
December 28, 2024
December 29, 2024
December 30, 2024
December 31, 2024

January

January 1, 2025
January 2, 2025
January 3, 2025
January 4, 2025
January 5, 2025
  • March 26, 2024 @ Bâtiment IMAG (442) -- [Seminar] Romain Cravic

    Who: Romain Cravic

    When: Tuesday, March 26, 14:00-15:00

    Where: IMAG 406

    What: Résoudre les jeux partiellement observables : Algorithme CFR et variantes de Monte-Carlo, deuxième partie

    More: Dans ce séminaire en deux parties, je vous présenterai la famille des algorithmes CFR (CounterFactual Regret minimization) appliqués aux jeux sous forme extensive à information incomplète. CFR a été utilisé en 2015 par des chercheurs de l’université d’Alberta pour résoudre une version « réaliste » du poker (Heads-up limit poker). Dans la première partie nous verrons comment modéliser l’information incomplète pour les jeux à deux joueurs à somme nulle, comment définir des stratégies dans ce modèle, avant d’analyser en détail l’algorithme CFR qui calcule un approximation de l’équilibre de Nash du jeu. Pour aller plus loin, dans la seconde partie, nous étudierons les variantes dites « Monte-Carlo » de l’algorithme CFR qui sont indispensables quand on souhaite trouver des bonnes stratégies dans des jeux plus ambitieux.

  • April 3, 2024 @ Bâtiment IMAG (442) -- [Seminar] Victor Boone

    Who: Victor Boone

    When: Wednesday, April 3, 14:00-15:00

    Where: 447

    What: Learning MDPs with Extended Bellman Operators

    More: Efficiently learning Markov Decision Processes (MDPs) is difficult. When facing an unknown environment, where is the adequate limit between repeating actions that have shown their efficiency in the past (exploitation of your knowledge) and testing alternatives that may actually be better than what you currently believe (exploration of the environment)? To bypass this dilemma, a well-known solution is the "optimism-in-face-of-uncertainty" principle: Think of the score of an action as being the largest that is statistically plausible.

    The exploration-exploitation dilemma then becomes the problem of tuning optimism. In this talk, I will explain how optimism in MDPs can be all rephrased using a single operator, embedding all the uncertainty in your environment within a single MDP. This is a story about "extended Bellman operators" and "extended MDPs", and about how one can achieve minimax optimal regret using this machinery.

  • April 11, 2024 @ Bâtiment IMAG (442) -- [Seminar] Charles Arnal

    Who: Charles Arnal

    When: Thursday, April 11, 14:00-15:00

    Where: 442

    What: Mode Estimation with Partial Feedback

    More: The combination of lightly supervised pre-training and online fine-tuning has played a key role in recent AI developments. These new learning pipelines call for new theoretical frameworks. In this paper, we formalize core aspects of weakly supervised and active learning with a simple problem: the estimation of the mode of a distribution using partial feedback. We show how entropy coding allows for optimal information acquisition from partial feedback, develop coarse sufficient statistics for mode identification, and adapt bandit algorithms to our new setting. Finally, we combine those contributions into a statistically and computationally efficient solution to our problem.

  • April 30, 2024 @ Bâtiment IMAG (442) -- Seminar Rémi Castera

    Correlation of Rankings in Matching Markets

Comments are closed.