Calendar

The week's events

  • Autotuning MPI Collectives using Performance Guidelines, Sascha Hunold

    Category: Seminars Autotuning MPI Collectives using Performance Guidelines, Sascha Hunold


    December 18, 2017

    MPI collective operations provide a standardized interface for performing data movements within a group of processes. The efficiency
    of collective communication operations depends on the actual algorithm, its implementation, and the specific communication problem
    (type of communication, message size, and number of processes).
    Many MPI libraries provide numerous algorithms for specific collective operations. The strategy for selecting an efficient algorithm
    is often times predefined (hard-coded) in MPI libraries, but some of
    them, such as Open MPI, allow users to change the algorithm manually. Finding the best algorithm for each case is a hard problem, and
    several approaches to tune these algorithmic parameters have been
    proposed. We use an orthogonal approach to the parameter-tuning
    of MPI collectives, that is, instead of testing individual algorithmic
    choices provided by an MPI library, we compare the latency of
    a specific MPI collective operation to the latency of semantically
    equivalent functions, which we call the mock-up implementations.
    The structure of the mock-up implementations is defined by selfconsistent performance guidelines. The advantage of this approach
    is that tuning using mock-up implementations is always possible,
    whether or not an MPI library allows users to select a specific algorithm at run-time. We implement this concept in a library called
    PGMPITuneLib, which is layered between the user code and the
    actual MPI implementation. This library selects the best-performing
    algorithmic pattern of an MPI collective by intercepting MPI calls
    and redirecting them to our mock-up implementations. Experimental results show that PGMPITuneLib can significantly reduce the
    latency of MPI collectives, and also equally important, that it can
    help identifying the tuning potential of MPI libraries.

  • TAPIOCA : Une bibliothèque d'agrégation de données pour les I/O parallèles prenant en compte la topologie, François Tessier, Argonne

    Category: Seminars TAPIOCA : Une bibliothèque d'agrégation de données pour les I/O parallèles prenant en compte la topologie, François Tessier, Argonne


    December 21, 2017

    TAPIOCA : Une bibliothèque d'agrégation de données pour les I/O
    parallèles prenant en compte la topologie

    L'augmentation de la puissance de calcul des supercalculateurs engendre
    un coût considérable des mouvements de données. En outre, la majorité
    des simulations scientifiques ont des besoins importants en terme de
    lecture et d'écriture sur les systèmes de fichiers parallèles. De
    nombreuses solutions logicielles ont été développées pour contenir le
    goulot d'étranglement causé par les I/O. Une stratégie bien connue dans
    le monde des opérations collectives d'I/O consiste à sélectionner un
    sous-ensemble des processus de l'application pour agréger des morceaux
    de données contiguës avant d'effectuer les lectures et écritures. Dans
    cet exposé, je présenterai TAPIOCA, une bibliothèque MPI implémentant un
    algorithme d’agrégation de données optimisé prenant en compte la
    topologie. Je montrerai les gains de performance substantiels en lecture
    et écriture que nous avons obtenus sur deux supercalculateurs présents à
    Argonne National Laboratory. Pour terminer, j'aborderai nos travaux
    actuels dans TAPIOCA afin de tirer parti des nouveaux niveaux de mémoire
    et de stockage disponibles sur les systèmes actuels et à venir (MCDRAM,
    SSD locaux, ...).

    Bâtiment IMAG
    Saint-Martin-d'Hères, 38400
    France

Comments are closed.