Topology in low dimension

Our work in Topology mainly focuses on the study of variety in small dimension with problem ranging from   character varieties, hyperbolic and CR structures, volumes, deformation varieties to specific developments for algebraic curves and surfaces, including certified drawing  and  passing through  knot theory.

These activities are part of different funded projects :

Related publications

  • [PDF] C. Katsamaki, “Exact Algebraic and Geometric Computations for Parametric Curves,” Theses PhD Thesis, 2023.
    [Bibtex]
    @phdthesis{katsamaki:tel-04167904,
    TITLE = {{Exact Algebraic and Geometric Computations for Parametric Curves}},
    AUTHOR = {Katsamaki, Christina},
    URL = {https://theses.hal.science/tel-04167904},
    NUMBER = {2023SORUS206},
    SCHOOL = {{Sorbonne Universit{\'e}}},
    YEAR = {2023},
    MONTH = Jun,
    KEYWORDS = {Symbolic computation ; Polynomial system solving ; Bit-complexity ; Parametric curve ; Topology ; Convex hull ; Calcul formel ; Syst{\`e}me polynomial ; Complexit{\'e} binaire ; Courbe param{\'e}trique ; Topologie ; Enveloppe convexe},
    TYPE = {Theses},
    PDF = {https://theses.hal.science/tel-04167904v2/file/KATSAMAKI_Christina_these_2023.pdf},
    HAL_ID = {tel-04167904},
    HAL_VERSION = {v2},
    }
  • [DOI] M. Deraux and M. Xu, “Torsion in 1-Cusped Picard Modular Groups,” Transformation Groups, 2023.
    [Bibtex]
    @article{deraux:hal-03981593,
    TITLE = {{Torsion in 1-Cusped Picard Modular Groups}},
    AUTHOR = {Deraux, Martin and Xu, Mengmeng},
    URL = {https://hal.science/hal-03981593},
    JOURNAL = {{Transformation Groups}},
    PUBLISHER = {{Springer Verlag}},
    YEAR = {2023},
    MONTH = Jan,
    DOI = {10.1007/s00031-022-09783-z},
    HAL_ID = {hal-03981593},
    HAL_VERSION = {v1},
    }
  • [DOI] M. Deraux, “On Subgroups Finite Index in Complex Hyperbolic Lattice Triangle Groups,” Experimental Mathematics, pp. 1-26, 2023.
    [Bibtex]
    @article{deraux:hal-04000578,
    TITLE = {{On Subgroups Finite Index in Complex Hyperbolic Lattice Triangle Groups}},
    AUTHOR = {Deraux, Martin},
    URL = {https://hal.science/hal-04000578},
    JOURNAL = {{Experimental Mathematics}},
    HAL_LOCAL_REFERENCE = {GT},
    PUBLISHER = {{Taylor \& Francis}},
    PAGES = {1-26},
    YEAR = {2023},
    DOI = {10.1080/10586458.2022.2158969},
    HAL_ID = {hal-04000578},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] A. Chalkis, I. Z. Emiris, V. Fisikopoulos, P. Repouskos, and E. Tsigaridas, “Efficient sampling in spectrahedra and volume approximation,” Linear Algebra and its Applications, vol. 648, pp. 205-232, 2022.
    [Bibtex]
    @article{chalkis:hal-03659476,
    TITLE = {{Efficient sampling in spectrahedra and volume approximation}},
    AUTHOR = {Chalkis, Apostolos and Emiris, Ioannis Z. and Fisikopoulos, Vissarion and Repouskos, Panagiotis and Tsigaridas, Elias},
    URL = {https://inria.hal.science/hal-03659476},
    JOURNAL = {{Linear Algebra and its Applications}},
    PUBLISHER = {{Elsevier}},
    VOLUME = {648},
    PAGES = {205-232},
    YEAR = {2022},
    MONTH = Sep,
    DOI = {10.1016/j.laa.2022.04.002},
    KEYWORDS = {Spectahedron ; Volume approximation ; Optimization ; Polynomial eigenvalue problem ; Monter Carlo ; Sampling ; Random walk ; Semidefinite-programming},
    PDF = {https://inria.hal.science/hal-03659476/file/spectra-vol-j.pdf},
    HAL_ID = {hal-03659476},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] F. Cucker, A. A. Ergür, and J. Tonelli-Cueto, “On the Complexity of the Plantinga-Vegter Algorithm,” Discrete and Computational Geometry, 2022.
    [Bibtex]
    @article{cucker:hal-02552018,
    TITLE = {{On the Complexity of the Plantinga-Vegter Algorithm}},
    AUTHOR = {Cucker, Felipe and Erg{\"u}r, Alperen A. and Tonelli-Cueto, Josu{\'e}},
    URL = {https://inria.hal.science/hal-02552018},
    JOURNAL = {{Discrete and Computational Geometry}},
    PUBLISHER = {{Springer Verlag}},
    YEAR = {2022},
    MONTH = Aug,
    DOI = {10.1007/s00454-022-00403-x},
    KEYWORDS = {Complexity ; Subdivision methods ; Plantinga-Vegter algorithm},
    PDF = {https://inria.hal.science/hal-02552018/file/On_the_Complexity_of_the_Plantinga_Vegter_algorithm%20%282%29.pdf},
    HAL_ID = {hal-02552018},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] A. Chalkis, C. Katsamaki, and J. Tonelli-Cueto, “On the Error of Random Sampling: Uniformly Distributed Random Points on Parametric Curves,” in ISSAC ’22 – International Symposium on Symbolic and Algebraic Computation, Villeneuve-d’Ascq, France, 2022.
    [Bibtex]
    @inproceedings{chalkis:hal-03601563,
    TITLE = {{On the Error of Random Sampling: Uniformly Distributed Random Points on Parametric Curves}},
    AUTHOR = {Chalkis, Apostolos and Katsamaki, Christina and Tonelli-Cueto, Josu{\'e}},
    URL = {https://inria.hal.science/hal-03601563},
    NOTE = {9 pages, 3 figures, 1 table},
    BOOKTITLE = {{ISSAC '22 - International Symposium on Symbolic and Algebraic Computation}},
    ADDRESS = {Villeneuve-d'Ascq, France},
    YEAR = {2022},
    MONTH = Jul,
    DOI = {10.1145/3476446.3536190},
    KEYWORDS = {Parametric curves ; Sampling ; Sampling error ; Chebyshev ; Approximation},
    PDF = {https://inria.hal.science/hal-03601563/file/2203.02832%282%29.pdf},
    HAL_ID = {hal-03601563},
    HAL_VERSION = {v1},
    }
  • [DOI] D. N. Diatta, S. Diatta, F. Rouillier, M. Roy, and M. Sagraloff, “Bounds for polynomials on algebraic numbers and application to curve topology,” Discrete and Computational Geometry, vol. 67, p. 631–697, 2022.
    [Bibtex]
    @article{diatta:hal-01891417,
    TITLE = {{Bounds for polynomials on algebraic numbers and application to curve topology}},
    AUTHOR = {Diatta, Daouda Niang and Diatta, S{\'e}ny and Rouillier, Fabrice and Roy, Marie-Fran{\c c}oise and Sagraloff, Michael},
    URL = {https://inria.hal.science/hal-01891417},
    JOURNAL = {{Discrete and Computational Geometry}},
    PUBLISHER = {{Springer Verlag}},
    VOLUME = {67},
    PAGES = {631--697},
    YEAR = {2022},
    MONTH = Feb,
    DOI = {10.1007/s00454-021-00353-w},
    HAL_ID = {hal-01891417},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] C. Katsamaki, F. Rouillier, E. Tsigaridas, and Z. Zafeirakopoulos, “PTOPO: Computing the Geometry and the Topology of Parametric Curves,” Journal of Symbolic Computation, 2022.
    [Bibtex]
    @article{katsamaki:hal-03090184,
    TITLE = {{PTOPO: Computing the Geometry and the Topology of Parametric Curves}},
    AUTHOR = {Katsamaki, Christina and Rouillier, Fabrice and Tsigaridas, Elias and Zafeirakopoulos, Zafeirakis},
    URL = {https://hal.science/hal-03090184},
    JOURNAL = {{Journal of Symbolic Computation}},
    PUBLISHER = {{Elsevier}},
    YEAR = {2022},
    MONTH = Aug,
    DOI = {10.1016/j.jsc.2022.08.012},
    KEYWORDS = {Topology ; Bit complexity ; Parametric curve ; Polynomial systems},
    PDF = {https://hal.science/hal-03090184v3/file/ptopo-JSC.pdf},
    HAL_ID = {hal-03090184},
    HAL_VERSION = {v3},
    }
  • [PDF] [DOI] E. Falbel, M. Mion-Mouton, and J. M. Veloso, “Cartan connections and path structures with large automorphisms groups,” International Journal of Mathematics, 2021.
    [Bibtex]
    @article{falbel:hal-03214060,
    TITLE = {{Cartan connections and path structures with large automorphisms groups}},
    AUTHOR = {Falbel, Elisha and Mion-Mouton, Martin and Veloso, Jose Miguel},
    URL = {https://hal.science/hal-03214060},
    NOTE = {In this (unpublished) improved version, we withdraw the hypothesis of a dense orbit of the automorphism group in the main Theorem 1.1 when the structure is class C^3.},
    JOURNAL = {{International Journal of Mathematics}},
    PUBLISHER = {{World Scientific Publishing}},
    YEAR = {2021},
    MONTH = Oct,
    DOI = {10.1142/S0129167X21400164},
    PDF = {https://hal.science/hal-03214060v2/file/strictpathstructures-020323m.pdf},
    HAL_ID = {hal-03214060},
    HAL_VERSION = {v2},
    }
  • [PDF] [DOI] E. Falbel, A. Guilloux, and Q. Wang, “Geometric structures and configurations of flags in orbits of real forms,” São Paulo Journal of Mathematical Sciences, vol. 15, iss. 1, pp. 175-213, 2021.
    [Bibtex]
    @article{falbel:hal-03377097,
    TITLE = {{Geometric structures and configurations of flags in orbits of real forms}},
    AUTHOR = {Falbel, Elisha and Guilloux, Antonin and Wang, Qingxue},
    URL = {https://hal.sorbonne-universite.fr/hal-03377097},
    JOURNAL = {{S{\~a}o Paulo Journal of Mathematical Sciences}},
    PUBLISHER = {{Springer}},
    VOLUME = {15},
    NUMBER = {1},
    PAGES = {175-213},
    YEAR = {2021},
    MONTH = Jun,
    DOI = {10.1007/s40863-020-00175-3},
    PDF = {https://hal.sorbonne-universite.fr/hal-03377097/file/article.pdf},
    HAL_ID = {hal-03377097},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] A. Guilloux and J. Marché, “Volume function and Mahler measure of exact polynomials,” Compositio Mathematica, vol. 157, iss. 4, pp. 809-834, 2021.
    [Bibtex]
    @article{guilloux:hal-03377099,
    TITLE = {{Volume function and Mahler measure of exact polynomials}},
    AUTHOR = {Guilloux, Antonin and March{\'e}, Julien},
    URL = {https://hal.sorbonne-universite.fr/hal-03377099},
    JOURNAL = {{Compositio Mathematica}},
    PUBLISHER = {{Foundation Compositio Mathematica}},
    VOLUME = {157},
    NUMBER = {4},
    PAGES = {809-834},
    YEAR = {2021},
    MONTH = Apr,
    DOI = {10.1112/S0010437X21007016},
    KEYWORDS = {Mahler measure ; A-polynomial ; Amoeba ; K-theory ; Hyperbolic geometry},
    PDF = {https://hal.sorbonne-universite.fr/hal-03377099/file/AJ_final.pdf},
    HAL_ID = {hal-03377099},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] J. Tonelli-Cueto and E. Tsigaridas, “Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces,” Journal of Symbolic Computation, vol. 115, pp. 142-173, 2022.
    [Bibtex]
    @article{tonellicueto:hal-03086875,
    TITLE = {{Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces}},
    AUTHOR = {Tonelli-Cueto, Josu{\'e} and Tsigaridas, Elias},
    URL = {https://inria.hal.science/hal-03086875},
    JOURNAL = {{Journal of Symbolic Computation}},
    PUBLISHER = {{Elsevier}},
    VOLUME = {115},
    PAGES = {142-173},
    YEAR = {2022},
    DOI = {10.1016/j.jsc.2022.08.013},
    KEYWORDS = {Sparse polynomials ; Subdivision methods ; Probabilistic complexity ; Numerical algebraic geometry ; Condition number},
    PDF = {https://inria.hal.science/hal-03086875/file/Condition_Numbers_for_the_Cube__I__Univariate_Polynomials_and_Hypersurfaces%20%282%29.pdf},
    HAL_ID = {hal-03086875},
    HAL_VERSION = {v1},
    }
  • [PDF] M. Mehrabdollahei, “The Mahler measure of a family of exact polynomials,” Theses PhD Thesis, 2022.
    [Bibtex]
    @phdthesis{mehrabdollahei:tel-03928278,
    TITLE = {{The Mahler measure of a family of exact polynomials}},
    AUTHOR = {Mehrabdollahei, Mahya},
    URL = {https://theses.hal.science/tel-03928278},
    NUMBER = {2022SORUS170},
    SCHOOL = {{Sorbonne Universit{\'e}}},
    YEAR = {2022},
    MONTH = Jul,
    KEYWORDS = {Mahler measure ; Polynomial ; Exact polynomial ; Regular polynomial ; Bloch--Wigner dilogarithm ; Asymptotic expansion ; Dirichlet L-functions ; Dirichlet characters ; Mesure de Mahler ; Polyn{\^o}me ; Polyn{\^o}me exact ; Polyn{\^o}me r{\'e}gulier ; Dilogarithme de Bloch-Wigner ; D{\'e}veloppement asymptotique ; Fonctions L de Dirichlet ; Caract{\`e}re de Dirichlet},
    TYPE = {Theses},
    PDF = {https://theses.hal.science/tel-03928278/file/MEHRABDOLLAHEI_Mahya_these_2022.pdf},
    HAL_ID = {tel-03928278},
    HAL_VERSION = {v1},
    }
  • [PDF] R. V. Alexandre, “Geometric structures and boundaries of symmetric spaces,” Theses PhD Thesis, 2022.
    [Bibtex]
    @phdthesis{alexandre:tel-03779876,
    TITLE = {{Geometric structures and boundaries of symmetric spaces}},
    AUTHOR = {Alexandre, Rapha{\"e}l V},
    URL = {https://theses.hal.science/tel-03779876},
    NUMBER = {2022SORUS132},
    SCHOOL = {{Sorbonne Universit{\'e}}},
    YEAR = {2022},
    MONTH = Jun,
    KEYWORDS = {Geometric structures ; Nil-affine manifolds ; Triangle groups ; Structures g{\'e}om{\'e}triques ; Connexion affine ; Groupes de triangles ; G{\'e}om{\'e}trie CR sph{\'e}rique ; Vari{\'e}t{\'e}s nil-affines ; G{\'e}om{\'e}trisation vari{\'e}t{\'e}s ferm{\'e}es},
    TYPE = {Theses},
    PDF = {https://theses.hal.science/tel-03779876v2/file/ALEXANDRE_Raphael_these_2022.pdf},
    HAL_ID = {tel-03779876},
    HAL_VERSION = {v2},
    }
  • [PDF] [DOI] E. Falbel, A. Guilloux, and Q. Wang, “Geometric structures and configurations of flags in orbits of real forms,” São Paulo Journal of Mathematical Sciences, vol. 15, iss. 1, pp. 175-213, 2021.
    [Bibtex]
    @article{falbel:hal-03377097,
    TITLE = {{Geometric structures and configurations of flags in orbits of real forms}},
    AUTHOR = {Falbel, Elisha and Guilloux, Antonin and Wang, Qingxue},
    URL = {https://hal.sorbonne-universite.fr/hal-03377097},
    JOURNAL = {{S{\~a}o Paulo Journal of Mathematical Sciences}},
    PUBLISHER = {{Springer}},
    VOLUME = {15},
    NUMBER = {1},
    PAGES = {175-213},
    YEAR = {2021},
    MONTH = Jun,
    DOI = {10.1007/s40863-020-00175-3},
    PDF = {https://hal.sorbonne-universite.fr/hal-03377097/file/article.pdf},
    HAL_ID = {hal-03377097},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] A. Guilloux and J. Marché, “Volume function and Mahler measure of exact polynomials,” Compositio Mathematica, vol. 157, iss. 4, pp. 809-834, 2021.
    [Bibtex]
    @article{guilloux:hal-03377099,
    TITLE = {{Volume function and Mahler measure of exact polynomials}},
    AUTHOR = {Guilloux, Antonin and March{\'e}, Julien},
    URL = {https://hal.sorbonne-universite.fr/hal-03377099},
    JOURNAL = {{Compositio Mathematica}},
    PUBLISHER = {{Foundation Compositio Mathematica}},
    VOLUME = {157},
    NUMBER = {4},
    PAGES = {809-834},
    YEAR = {2021},
    MONTH = Apr,
    DOI = {10.1112/S0010437X21007016},
    KEYWORDS = {Mahler measure ; A-polynomial ; Amoeba ; K-theory ; Hyperbolic geometry},
    PDF = {https://hal.sorbonne-universite.fr/hal-03377099/file/AJ_final.pdf},
    HAL_ID = {hal-03377099},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] E. Brugallé, P. Koseleff, and D. Pecker, “The lexicographic degree of the first two-bridge knots,” Annales de la Faculté des Sciences de Toulouse. Mathématiques., vol. 29, iss. 4, pp. 761-793, 2020.
    [Bibtex]
    @article{brugalle:hal-01108678,
    TITLE = {{The lexicographic degree of the first two-bridge knots}},
    AUTHOR = {Brugall{\'e}, Erwan and Koseleff, Pierre-Vincent and Pecker, Daniel},
    URL = {https://hal.science/hal-01108678},
    JOURNAL = {{Annales de la Facult{\'e} des Sciences de Toulouse. Math{\'e}matiques.}},
    PUBLISHER = {{Universit{\'e} Paul Sabatier \_ Cellule Mathdoc }},
    VOLUME = {29},
    NUMBER = {4},
    PAGES = {761-793},
    YEAR = {2020},
    MONTH = Dec,
    DOI = {10.5802/afst.1645},
    KEYWORDS = {Chebyshev curves ; Two-bridge knots ; Polynomial knots ; Real pseudoholomorphic curves},
    PDF = {https://hal.science/hal-01108678v2/file/bkp-nl-2018.pdf},
    HAL_ID = {hal-01108678},
    HAL_VERSION = {v2},
    }
  • [PDF] [DOI] C. Katsamaki, F. Rouillier, E. Tsigaridas, and Z. Zafeirakopoulos, “PTOPO: A Maple package for the topology of parametric curves,” ACM Communications in Computer Algebra, vol. 54, iss. 2, pp. 49-52, 2020.
    [Bibtex]
    @article{katsamaki:hal-02953909,
    TITLE = {{PTOPO: A Maple package for the topology of parametric curves}},
    AUTHOR = {Katsamaki, Christina and Rouillier, Fabrice and Tsigaridas, Elias and Zafeirakopoulos, Zafeirakis},
    URL = {https://inria.hal.science/hal-02953909},
    JOURNAL = {{ACM Communications in Computer Algebra}},
    PUBLISHER = {{Association for Computing Machinery (ACM)}},
    VOLUME = {54},
    NUMBER = {2},
    PAGES = {49-52},
    YEAR = {2020},
    MONTH = Sep,
    DOI = {10.1145/3427218.3427223},
    PDF = {https://inria.hal.science/hal-02953909/file/soft_ptopo.pdf},
    HAL_ID = {hal-02953909},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] E. Falbel and J. Veloso, “Flag structures on real 3-manifolds,” Geometriae Dedicata, 2020.
    [Bibtex]
    @article{falbel:hal-01778582,
    TITLE = {{Flag structures on real 3-manifolds}},
    AUTHOR = {Falbel, Elisha and Veloso, Jose},
    URL = {https://hal.science/hal-01778582},
    JOURNAL = {{Geometriae Dedicata}},
    PUBLISHER = {{Springer Verlag}},
    YEAR = {2020},
    MONTH = Apr,
    DOI = {10.1007/s10711-020-00528-4},
    PDF = {https://hal.science/hal-01778582/file/flaggeometry.pdf},
    HAL_ID = {hal-01778582},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] J. G. Alcázar, J. Caravantes, G. M. Diaz-Toca, and E. Tsigaridas, “Computing the topology of a plane or space hyperelliptic curve,” Computer Aided Geometric Design, 2020.
    [Bibtex]
    @article{alcazar:hal-01968776,
    TITLE = {{Computing the topology of a plane or space hyperelliptic curve}},
    AUTHOR = {Alc{\'a}zar, Juan Gerardo and Caravantes, Jorge and Diaz-Toca, Gema M and Tsigaridas, Elias},
    URL = {https://inria.hal.science/hal-01968776},
    JOURNAL = {{Computer Aided Geometric Design}},
    PUBLISHER = {{Elsevier}},
    YEAR = {2020},
    MONTH = Feb,
    DOI = {10.1016/j.cagd.2020.101830},
    PDF = {https://inria.hal.science/hal-01968776v2/file/Topology-hyperelliptic-curves-paper-second-rev-versl-DEF.pdf},
    HAL_ID = {hal-01968776},
    HAL_VERSION = {v2},
    }
  • [DOI] E. Falbel, A. Guilloux, and P. Will, “Hilbert metric without convexity,” Journal of Geometric Analysis, vol. 30, p. 2865–2896, 2020.
    [Bibtex]
    @article{falbel:hal-01768400,
    TITLE = {{Hilbert metric without convexity}},
    AUTHOR = {Falbel, Elisha and Guilloux, Antonin and Will, Pierre},
    URL = {https://hal.science/hal-01768400},
    JOURNAL = {{Journal of Geometric Analysis}},
    HAL_LOCAL_REFERENCE = {GT},
    SERIES = {Gennadi Henkin: In Memoriam},
    VOLUME = {30},
    PAGES = {2865--2896},
    YEAR = {2020},
    DOI = {10.1007/s12220-020-00426-x},
    HAL_ID = {hal-01768400},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] J. Tonelli-Cueto and E. Tsigaridas, “Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces,” in Proceedings of the 2020 International Symposium on Symbolic and Algebraic Computation, ISSAC’20, Kalamata, Greece, 2020, pp. 434-441.
    [Bibtex]
    @inproceedings{tonellicueto:hal-02736942,
    TITLE = {{Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces}},
    AUTHOR = {Tonelli-Cueto, Josu{\'e} and Tsigaridas, Elias},
    URL = {https://inria.hal.science/hal-02736942},
    BOOKTITLE = {{Proceedings of the 2020 International Symposium on Symbolic and Algebraic Computation, ISSAC'20}},
    ADDRESS = {Kalamata, Greece},
    PAGES = {434-441},
    YEAR = {2020},
    MONTH = Jul,
    DOI = {10.1145/3373207.3404054},
    KEYWORDS = {Numerical algebraic geometry ; Condition number ; Sparse polynomials ; Subdivision methods ; Probabilistic complexity},
    PDF = {https://inria.hal.science/hal-02736942v2/file/Condition_Numbers_for_the_Cube__I__Univariate_Polynomials_and_Hypersurfaces__ISSAC_%20%283%29.pdf},
    HAL_ID = {hal-02736942},
    HAL_VERSION = {v2},
    }
  • [PDF] [DOI] R. Fabbri, T. Duff, H. Fan, M. Regan, D. da Costa de Pinho, E. Tsigaridas, C. Wampler, J. Hauenstein, P. Giblin, B. Kimia, A. Leykin, and T. Pajdla, “TRPLP – Trifocal Relative Pose From Lines at Points,” in CVPR 2020 – IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle / Virtual, United States, 2020, pp. 12070-12080.
    [Bibtex]
    @inproceedings{fabbri:hal-03105216,
    TITLE = {{TRPLP -- Trifocal Relative Pose From Lines at Points}},
    AUTHOR = {Fabbri, Ricardo and Duff, Timothy and Fan, Hongyi and Regan, Margaret and da Costa de Pinho, David and Tsigaridas, Elias and Wampler, Charles and Hauenstein, Jonathan and Giblin, Peter and Kimia, Benjamin and Leykin, Anton and Pajdla, Tomas},
    URL = {https://inria.hal.science/hal-03105216},
    NOTE = {Code available at http://github.com/rfabbri/minus},
    BOOKTITLE = {{CVPR 2020 - IEEE/CVF Conference on Computer Vision and Pattern Recognition}},
    ADDRESS = {Seattle / Virtual, United States},
    PUBLISHER = {{IEEE}},
    PAGES = {12070-12080},
    YEAR = {2020},
    MONTH = Jun,
    DOI = {10.1109/CVPR42600.2020.01209},
    KEYWORDS = {Pose estimation ; Cameras ; Three-dimensional displays ; Pipelines ; Geometry ; Computer vision ; Feature extraction ; Image matching ; Image reconstruction ; SIFT features ; Point-and-line correspondences ; Grobner basis methods ; HC methods ; Generic cases ; Simulated experiments ; Three-view reconstruction ; TRPLP ; Minimal problems ; Relative camera ; View correspondences ; Efficient homotopy continuation solver ; Relative camera pose estimation},
    PDF = {https://inria.hal.science/hal-03105216/file/fabbri-kimia-etal-arxiv2019-v3-1.pdf},
    HAL_ID = {hal-03105216},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] A. Guilloux and P. Will, “On SL(3,C)-representations of the Whitehead link group,” Geometriae Dedicata, vol. 202, pp. 81-101, 2019.
    [Bibtex]
    @article{guilloux:hal-01370289,
    TITLE = {{On SL(3,C)-representations of the Whitehead link group}},
    AUTHOR = {Guilloux, Antonin and Will, Pierre},
    URL = {https://hal.science/hal-01370289},
    JOURNAL = {{Geometriae Dedicata}},
    HAL_LOCAL_REFERENCE = {GT},
    PUBLISHER = {{Springer Verlag}},
    VOLUME = {202},
    PAGES = {81-101},
    YEAR = {2019},
    DOI = {10.1007/s10711-018-0404-8},
    KEYWORDS = {Representations of fundamental groups of manifolds ; Hyperbolic geometry ; Character varieties ; Geometric structures},
    PDF = {https://hal.science/hal-01370289/file/comp-WLC-arxiv.pdf},
    HAL_ID = {hal-01370289},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] E. Bartzos, I. Z. Emiris, J. Legerský, and E. Tsigaridas, “On the maximal number of real embeddings of minimally rigid graphs in $\mathbb{R}^2$, $\mathbb{R}^3$ and $S^2$,” Journal of Symbolic Computation, 2019.
    [Bibtex]
    @article{bartzos:hal-02271782,
    TITLE = {{On the maximal number of real embeddings of minimally rigid graphs in $\mathbb{R}^2$, $\mathbb{R}^3$ and $S^2$}},
    AUTHOR = {Bartzos, Evangelos and Emiris, Ioannis Z. and Legersk{\'y}, Jan and Tsigaridas, Elias},
    URL = {https://hal.science/hal-02271782},
    JOURNAL = {{Journal of Symbolic Computation}},
    PUBLISHER = {{Elsevier}},
    YEAR = {2019},
    DOI = {10.1016/j.jsc.2019.10.015},
    KEYWORDS = {Cayley-Menger matrix ; Mixed volume ; Rigid graph ; Laman graph ; Real bound ; Coupler curve},
    PDF = {https://hal.science/hal-02271782v2/file/maximal_real_belt_HAL.pdf},
    HAL_ID = {hal-02271782},
    HAL_VERSION = {v2},
    }
  • [PDF] [DOI] I. Z. Emiris and C. Katsamaki, “Voronoi diagram of orthogonal polyhedra in two and three dimensions,” in SEA 2019 – Symposium on Experimental Algorithms, Kalamata, Greece, 2019.
    [Bibtex]
    @inproceedings{emiris:hal-02398736,
    TITLE = {{Voronoi diagram of orthogonal polyhedra in two and three dimensions}},
    AUTHOR = {Emiris, Ioannis Z. and Katsamaki, Christina},
    URL = {https://inria.hal.science/hal-02398736},
    BOOKTITLE = {{SEA 2019 - Symposium on Experimental Algorithms}},
    ADDRESS = {Kalamata, Greece},
    EDITOR = {Ilias Kotsireas and Panos Pardalos and Konstantinos E. Parsopoulos and Dimitris Souravlias and Arsenis Tsokas},
    PUBLISHER = {{Springer}},
    SERIES = {LNCS - Lecture Notes in Computer Science},
    VOLUME = {11544},
    YEAR = {2019},
    MONTH = Jun,
    DOI = {10.1007/978-3-030-34029-2\_1},
    KEYWORDS = {Straight skeleton ; Rectilinear ; Axis-aligned ; Max norm ; Subdivision method ; Numeric implementation},
    PDF = {https://inria.hal.science/hal-02398736/file/vd_arxiv.pdf},
    HAL_ID = {hal-02398736},
    HAL_VERSION = {v1},
    }
  • [PDF] D. M. Almeida and E. Falbel, “Fat sub-Riemannian symmetric spaces: the nilpotent case,” Arkiv för Matematik, 2018.
    [Bibtex]
    @article{almeida:hal-01791316,
    TITLE = {{Fat sub-Riemannian symmetric spaces: the nilpotent case}},
    AUTHOR = {Almeida, Dulce M. and Falbel, Elisha},
    URL = {https://hal.science/hal-01791316},
    JOURNAL = {{Arkiv f{\"o}r Matematik}},
    PUBLISHER = {{Royal Swedish Academy of Sciences, Institut Mittag-Leffler}},
    YEAR = {2018},
    KEYWORDS = {Sub-symmetric space ; Sub-Riemannian geometry ; Fat distribution ; Two-step nilpotent Lie algebra},
    PDF = {https://hal.science/hal-01791316/file/Nilpotent%20final%20copy.pdf},
    HAL_ID = {hal-01791316},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] A. Guilloux, “Volume of representations and birationality of peripheral holonomy,” Experimental Mathematics, vol. 27, iss. 4, 2018.
    [Bibtex]
    @article{guilloux:hal-01370287,
    TITLE = {{Volume of representations and birationality of peripheral holonomy}},
    AUTHOR = {Guilloux, Antonin},
    URL = {https://hal.science/hal-01370287},
    JOURNAL = {{Experimental Mathematics}},
    PUBLISHER = {{Taylor \& Francis}},
    VOLUME = {27},
    NUMBER = {4},
    YEAR = {2018},
    DOI = {10.1080/10586458.2017.1320240},
    PDF = {https://hal.science/hal-01370287/file/VolBirra.pdf},
    HAL_ID = {hal-01370287},
    HAL_VERSION = {v1},
    }
  • [PDF] [DOI] P. Koseleff, D. Pecker, F. Rouillier, and C. Tran, “Computing Chebyshev knot diagrams,” Journal of Symbolic Computation, vol. 86, p. 21, 2018.
    [Bibtex]
    @article{koseleff:hal-01232181,
    TITLE = {{Computing Chebyshev knot diagrams}},
    AUTHOR = {Koseleff, Pierre-Vincent and Pecker, Daniel and Rouillier, Fabrice and Tran, Cuong},
    URL = {https://inria.hal.science/hal-01232181},
    JOURNAL = {{Journal of Symbolic Computation}},
    HAL_LOCAL_REFERENCE = {hal-01232181},
    PUBLISHER = {{Elsevier}},
    VOLUME = {86},
    PAGES = {21},
    YEAR = {2018},
    DOI = {10.1016/j.jsc.2017.04.001},
    KEYWORDS = {Chebyshev forms ; Minimal polynomial ; Factorization of Chebyshev polynomials ; Chebyshev curves ; Zero dimensional systems ; Polynomial knots ; Lissajous knots},
    PDF = {https://inria.hal.science/hal-01232181v2/file/kprt_noels3.pdf},
    HAL_ID = {hal-01232181},
    HAL_VERSION = {v2},
    }

Comments are closed.