- MELISSA: MEthodological contributions in statistical Learning InSpired by SurfAce engineering. ANR PRCE 2024-2029
- ADADA: Adaptive Datasets for Enhancing Reasoning in Large Language Models ANR JCJC Damien Siléo 2024-2028
- REDEEM:REsilient, DEcentralized and privacy-prEserving Machine learning. PEPR IA. 2023-2027
- FaCTor: Fairness Constraints and Guarantees for Trustworthy Machine Learning, ANR JCJC Michael Perrot 2023-2027.
- FLUTE: Federate Learning and mUlti-party computation Techniques for prostatE cancer (HORIZON-HLTH-2022-IND-13-02) 2023-2026
- FedMalin: FEDerated MAchine Learning over the INternet. INRIA Defi, 2022-2026.
- TRUMPET: TRUstworthy Multi-site Privacy Enhancing Technologies. 2022-2025
- SSF-ML-DH Apprentissage automatique sécurisé, sûr et équitable pour les applications en santé, PEPR Santé numérique.
- IPop, Projet interdisciplinaire sur la protection des données personnelles, PEPR Cybersécurité 2022-2028.
- CAPSUL, CAmpus Participatif en Santé numérique du site Universitaire de Lille Appel à Manifestation d’Intérêt « Compétences et Métiers d’Avenir » Santé numérique, PIA4. 2022-2027.
- PRIDE: Privacy-Preserving Decentralized Machine Learning ANR, 2020-2024
- PMR: Privacy-preserving methods for Medical Research, ANR, 2021-2025
- IMPRESS: Improving embeddings with semantic knowledge, Inria-DFKI 2020-2024
- SLANT: Spin and bias in language analyzed in news and texts, ANR PRCI 2020-2024
- COMPRISE: Cost-effective, Multilingual, Privacy-driven voice-enabled Services, H2020 ICT, 18-21
- ANR DEEP-Privacy: Distributed, Personalized, Privacy-Preserving Learning for Speech Processing, ANR, 19-23
- PAMELA: Personalized and decentrAlized MachinE Learning under constrAints, ANR, 16-20
- GRASP: GRAph-based machine learning for linguistic Structure Prediction, ANR JCJC, 16-20
- REM: Analysis of English modal constructions, ANR, 16-20
- PAD-ML: Privacy-Aware Distributed Machine Learning, North-European Associate Team with the PPDA team at the Alan Turing Institute, 18-19
- HyAIAI: Hybrid Approaches for Interpretable AI, INRIA 2019-2022
- MUST: Méthodologie d’exploitation des données d’usage des véhicules et d’identification de nouveaux services pour les usagers et les territoires, ADEME, 17-19
- LEGO: LEarning GOod representations for natural language processing, Inria International team with USC, 17-18 et 19-20
- MyLocalInfo: Open API for privacy-friendly collaborative computing in the internet of things, CPER DATA, 18-21
- SOM: Statistical modeling for Optimization Mobility, ERC PoC, 16-17
Privacy Overview
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.