Team presentation

LEGO is an Inria associate team between MAGNET (Inria) and Fei Sha’s group (USC). It was created in January 2016 for 3 years and is part of the Inria@SiliconValley program.

Research themes

LEGO lies in the intersection of Machine Learning and Natural Language Processing (NLP). Its goal is to address the following challenges: what are the right representations for structured data and how to learn them automatically, and how to apply such representations to complex and structured prediction tasks in NLP? In recent years, continuous vectorial embeddings learned from massive unannotated corpora have been increasingly popular, but they remain far too limited to capture the complexity of text data as they are task-agnostic and fall short of modeling complex structures in languages. LEGO strongly relies on the complementary expertise of the two partners in areas such as representation/similarity learning, structured prediction, graph-based learning, and statistical NLP to offer a novel alternative to existing techniques.

Specifically, we plan to investigate the following three research directions:

  • optimize the embeddings based on annotations so as to minimize structured prediction errors,
  • generate embeddings from rich language contexts represented as graphs,
  • automatically adapt the context graph to the task/dataset of interest by learning a similarity between nodes to appropriately weigh the edges of the graph.

By exploring these complementary research strands, we intend to push the state-of-the-art in several core NLP problems, such as dependency parsing, coreference resolution and discourse parsing.

Comments are closed.