Seminars

Links' Seminars and Public Events Add to google calendar
2023
Fri 23rd Jun
11:00 am
12:00 pm
Add event to google
Seminar by Florent Capelli
Speaker: Florent Capelli — florent.capelli.me/

Title: A simpler FPRAS for nOBDD

Abstract: A simpler FPRAS for nOBDD

Abstract: In this talk, we revisit the algorithm by Arenas, Croquevielle, Jayaram and Riveros that allows to approximate the number of words of length n of a non deterministic finite automaton. We explain the algorithm and techniques in a modular and general way, without relating to the particular case of counting words in automaton. We illustrate the soundness of the approach by applying it to the problem of approximatively counting the number of satisfying assignments of a non-deterministic OBDD.
Show in Google map
B21
Fri 2nd Jun
11:00 am
12:30 pm
Add event to google
Séminaire Martin Berger
Title: Search-Based Regular Expression Inference on a GPU

Abstract: Regular expression inference (REI) is a supervised machine
learning and program synthesis problem that takes a cost metric for regular
expressions, and positive and negative examples of strings as input. It
outputs a regular expression that is precise (i.e., accepts all positive
and rejects all negative examples), and minimal w.r.t. to the cost metric.
We present a novel algorithm for REI over arbitrary alphabets that is
enumerative and trades off time for space. Our main algorithmic idea is to
implement the search space of regular expressions succinctly as a
contiguous matrix of bitvectors. Collectively, the bitvectors represent, as
characteristic sequences, all sub-languages of the infix-closure of the
union of positive and negative examples. Mathematically, this is a semiring
of (a variant of) formal power series. Infix-closure enables bottom-up
compositional construction of larger from smaller regular expressions using
the operations of our semiring. This minimises data movement and
data-dependent branching, hence maximises data-parallelism. In addition,
the infix-closure remains unchanged during the search, hence search can be
staged: first pre-compute various expensive operations, and then run the
compute intensive search process. We provide two C++ implementations, one
for general purpose CPUs and one for Nvidia GPUs (using CUDA). We benchmark
both on Google Colab Pro: the GPU implementation is on average over 1000x
faster than the CPU implementation on the hardest benchmarks.

Joint work with Mojtaba Valizadeh

Download: martinfriedrichberger.net/pldi2023.html

Thu 13th Apr
11:00 am
12:00 pm
Add event to google
Séminaire Yann Strozecki

Show in Google map
Esprit salle Agora 2 (rez-de-chaussée)
Tue 11th Apr
2:00 pm
3:00 pm
Add event to google
Séminaire Mamadou

Show in Google map
Esprit Agora 1 (rez-de-chaussée)
Fri 24th Mar
10:00 am
11:00 am
Add event to google
Séminaire Mamadou KANTE

Show in Google map
Fri 20th Jan
11:00 am
12:00 pm
Add event to google
Seminar by Tito
Speaker: Lê Thành Dũng Nguyễn, aka “Tito” — nguyentito.eu/

Title: Polyregular functions: some recent developments

Abstract:
The class of polyregular functions is composed of the string-to-string functions computed by pebble transducers. While this machine model (which extends two-way finite transducers) is two decades old, several alternative characterizations of polyregular functions have been discovered recently [Bojańczyk 2018; Bojańczyk, Kiefer & Lhote 2019], demonstrating their canonicity. The name comes from the polynomial bound on the growth rate of these functions: |f(w)| = |w|^O(1) where |w| is the length of the string w.

In this talk, after recalling this context, I will present some subsequent developments in which I have been involved:
* the subclass of comparison-free polyregular (or “polyblind”) functions, definable through a natural restriction of pebble transducers, which Pierre Pradic and I actually discovered while studying a linear λ-calculus;
* some results that either relate the growth rate of a polyregular function (comparison-free or not) to the “resources” needed to compute it, or show that there is no such relationship.
Fri 13th Jan
11:00 am
12:00 pm
Add event to google
Seminar by Sarah Winter
Speaker: Sarah Winter — sarahwinter.net/

Title: A Regular and Complete Notion of Delay for Streaming String Transducers

Abstract:
The notion of delay between finite transducers is a core element of numerous fundamental results of transducer theory. The goal of this work is to provide a similar notion for more complex abstract machines: we introduce a new notion of delay tailored to measure the similarity between streaming string transducers (SST).

We show that our notion is regular: we design a finite automaton that can check whether the delay between any two SSTs executions is smaller than some given bound. As a consequence, our notion enjoys good decidability properties: in particular, while equivalence between non-deterministic SSTs is undecidable, we show that equivalence up to fixed delay is decidable. Moreover, we show that our notion has good completeness properties: we prove that two SSTs are equivalent if and only if they are equivalent up to some (computable) bounded delay.

Together with the regularity of our delay notion, it provides an alternative proof that SSTs equivalence is decidable. Finally, the definition of our delay notion is machine-independent, as it only depends on the origin semantics of SSTs. As a corollary, the completeness result also holds for equivalent machine models such as deterministic two-way transducers, or MSO transducers.

This is joint work with Emmanuel Filiot, Ismaël Jecker, and Christof Löding.

Permanent link to this article: https://team.inria.fr/links/seminars/