Home

Links is a research project of Inria Lille, the University of Lille, and the CNRS (Cristal Lab).

Cake of Thursday

Links' News Add to google calendar
2018
Fri 16th Nov
11:00 am
12:30 pm
Add event to google
Aurelien Lemay's Habilitation defense
Show in Google map
IRCICA
Mon 5th Nov
9:00 am
10:00 am
Add event to google
Bruno Guillon arrives: our new postdoc working on distributed databases
Mon 15th Oct
to Tue 16th Oct
 all day
Add event to google
Show in Google map
Inria
40 Avenue Halley, 59650 Villeneuve d'Ascq, France
Mon 17th Sep
 all day
Add event to google
Mon 3rd Sep
11:00 pm
12:00 am
Add event to google
Sławek Staworko's paper on SheX containment got accepted at PODS 2019!
Tue 28th Aug
to Fri 31st Aug
 all day
Add event to google
A major conference on logic in AI origanized in Lille.
Show in Google map
EuraTechnologies, Lille, France
Mon 27th Aug
 all day
Add event to google
Rustam Azimov, a PhD student from Petersburg, starts his 3-months visit of Links. He will work with Sylvain Slavati and Joachim Niehren.
Mon 16th Apr
 all day
Add event to google
ICALP'18 paper accepted by Charles Paperman
Constrained Topological Sorting by Antoine Amarilli and Charles Paperman arxiv.org/pdf/1707.04310.pdf
Thu 15th Mar
 all day
Add event to google
ShEx 2.0 Release of Java Implementation
Publication of a first version of the implementation of ShEx 2.0 in java
[ github.com/iovka/shex-java | github.com/iovka/shex-java ]
Thu 1st Feb
to Thu 8th Feb
 all day
Add event to google
Visit of Vincent Penelle, Université de Bordeaux
Tue 16th Jan
 all day
Add event to google
Visit of Yann Strozecki, Université de Versailles

Mon 8th Jan
 all day
Add event to google
Arrival of Jérémie Dusard
Jérémie will work as an engineer on ShEx with Iovka Boneva
Wed 3rd Jan
10:00 am
11:00 am
Add event to google
I. Boneva published a book published with the W3C on schemas validation for the semantic Web

Team presentation

The appearance of linked data on the web calls for novel database management technologies for linked data collections. The classical challenges from database research need to be now raised for linked data: how to define exact logical queries, how to manage dynamic updates, and how to automatize the search for appropriate queries. In contrast to mainstream linked open data, the LINKS project will focus on linked data collections in various formats, under the assumption that the data is correct in most dimensions. The challenges remain difficult due to incomplete data, uninformative or heterogeneous schemas, and the remaining data errors and ambiguities. We will develop algorithms for evaluating and optimizing logical queries on linked data collections, incremental algorithms that can monitor streams of linked data and manage dynamical updates of linked data collections, and symbolic learning algorithms that can infer appropriate queries for linked data collections from examples.

Research themes

We will develop algorithms for answering logical querying on heterogeneous linked data collections in hybrid formats, distributed programming languages for managing dynamic linked data collections and workflows based on queries and mappings, and symbolic machine learning algorithms that can link datasets by inferring appropriate queries and mappings. Our main objectives are structured as follows:

  • Querying heterogeneous linked data. We will develop new kinds of schema mappings for semi- structured datasets in hybrid formats including graph databases, rdf collections, and relational databases. These induce recursive queries on linked data collections for which we will investigate evaluation algo- rithms, static analysis problems, and concrete applications.
  • Managing dynamic linked data. In order to manage dynamic linked data collections and workflows, we will develop distributed data-centric programming languages with streams and parallelism, based on novel algorithms for incremental query answering, will study the propagation of updates of dynamic data through schema mappings, and will investigate static analysis methods for linked data workflows.
  • Linking graphs. Finally, we will develop symbolic machine learning algorithms, for inferring queries and mappings between linked data collections in various graphs formats from annotated examples.

International and industrial relations

  • Stream Processing: QuiXTools (with Innovimax)
  • FUI Hermes

Permanent link to this article: https://team.inria.fr/links/