Seminars

Links' Seminars and Public Events Add to google calendar
2022
Fri 1st Jul
11:00 am
12:00 pm
Add event to google
Séminaire Arnaud Durand

Fri 10th Jun
10:00 am
11:00 am
Add event to google
Séminaire Corentin Barloy

Title:The Regular Languages of First-Order Logic with One Alternation
Abstract: The regular languages with a neutral letter expressible in first-order logic with one alternation are characterized. Specifically, it is shown that if an arbitrary Σ2 formula defines a regular language with a neutral letter, then there is an equivalent Σ2 formula that only uses the order predicate. This shows that the so-called Central Conjecture of Straubing holds for Σ2 over languages with a neutral letter, the first progress on the Conjecture in more than 20 years. To show the characterization, lower bounds against polynomial-size depth-3 Boolean circuits with constant top fan-in are developed. The heart of the combinatorial argument resides in studying how positions within a language are determined from one another, a technique of independent interest.
Fri 25th Feb
11:00 am
12:00 pm
Add event to google
Séminaire Nico

Fri 28th Jan
11:00 am
12:00 pm
Add event to google
Alexandre Vigny (visio)
Title:
Separator logic, expressive power and algorithmic applications
Abstract:
First-order logic (FO) can express many algorithmic problems on graphs,
but fails to express whether two vertices are connected. We define a
new logic (separator logic) by enriching FO with connectivity
predicates connk(x, y, z1, . . . , zk) that hold true in a graph if
there exists a path between x and y after deletion of z1, . . . , zk.
In this talk I will first present a study of the expressive power of
this new logic.
I will then present algorithmic results for this logic on graph classes
that exclude a topological minor.
These results were obtained in collaboration with Michał Pilipczuk,
Nicole Schirrmacher, Sebastian Siebertz, and Szymon Toruńczyk.

Fri 21st Jan
11:00 am
12:00 pm
Add event to google
Aurélien Lemay in Seminar

2021
Fri 10th Dec
11:00 am
12:00 pm
Add event to google
Séminaire Sebastien Tavenas

Title: Bornes inférieures superpolynomiales pour les circuits de profondeur constante

Abstract:
Tout polynôme multivarié P(X_1,...,X_n) peut être écrit comme une somme de
monômes, i.e., une somme de produits de variables et de constantes du corps.
La taille naturelle d'une telle expression est le nombre de monômes. Mais,
que se passe-t-il si on rajoute un nouveau niveau de complexité en
considérant les expressions de la forme : somme de produits de sommes (de
variables et de constantes) ? Maintenant, il devient moins clair comment
montrer qu'un polynôme donné n'a pas de petite expression. Dans cet exposé
nous résoudrons exactement ce problème. Plus précisément, nous prouvons que
certains polynômes explicites n'ont pas de représentations "somme de
produits de sommes'' (SPS) de taille polynomiale. Nous pouvons aussi obtenir
des résultats similaires pour les SPSP, SPSPS, etc... pour toutes les
expressions de profondeur constante.
"
Thu 25th Nov
2:00 pm
3:00 pm
Add event to google
Nofar Carmeli in Links' Seminar
Fri 29th Oct
11:00 am
12:00 pm
Add event to google
Séminaire Antoine Amarilli

Fri 22nd Oct
11:00 am
12:00 pm
Add event to google
Mikaël Monet in Links' Seminar
Fri 15th Oct
11:00 am
12:00 pm
Add event to google
Claire Soyez-Martin in Links' seminar
Fri 17th Sep
11:00 am
12:00 pm
Add event to google
Séminaire Corentin Barloy
Title: Stackless Processing of Streamed Trees
Abstract:
Processing tree-structured data in the streaming model is a chal-lenge: capturing regular properties of streamed trees by means of astack is costly in memory, but falling back to finite-state automata drastically limits the computational power. We propose an intermediate stackless model based on register automata equipped with a single counter, used to maintain the current depth in the tree. We explore the power of this model to validate and query streamed trees. Our main result is an effective characterization of regular path queries (RPQs) that can be evaluated stacklessly—with and without registers. In particular, we confirm the conjectured characterization of tree languages defined by DTDs that are recognizable without registers, by Segoufin and Vianu (2002), in the special case of tree languages defined by means of an RPQ.

Link: paperman.name/data/pub.....0.pdf

Show in Google map
lille-Salle
Fri 10th Sep
10:00 am
11:00 am
Add event to google
Séminaire de Patrick Baillot
titre: Type-based complexity analysis in a parallel process calculus

Abstract:
Some type systems have been designed to analyse statically the time
coplexity of functional languages. A natural question is whether this approach
can be extended to parallel languages. We address this problem for the
Pi-calculus, a paradigmatic calculus for parallel and concurrent computation.
In Pi-calculus, processes communicate through channels that can carry values
and channel names. We will define notions of sequential and parallel complexity
for Pi-calculus, and present a type system that provides an upper bound on the
time complexity of processes.
This is based on joint work with Alexis Ghyselen (ESOP 2021).

Based on: link.springer.com/chap.....9-3_3
Show in Google map
Fri 9th Jul
 all day
Add event to google
Seminar - Antonio AL SERHALI
Title: Integrating Schema-Based Cleaning into Automata Determinization

Abstract : Schema-based cleaning for automata on trees or nested words
was proposed recently to compute smaller deterministic automata for
regular path queries on data trees. The idea is to remove all rules and
states, from an automaton for the query, that are not needed to recognize
any tree recognized by a given schema automaton. Unfortunately, how-
ever, deterministic automata for nested words may still grow large for au-
tomata for XPath queries, so that the much smaller schema-cleaned ver-
sion cannot always be computed in practice. We therefore propose a new
schema-based determinization algorithm that integrates schema-based
cleaning directly. We prove that schema-based determinization always
produces the same deterministic automaton as schema-based cleaning
after standard determinization. Nevertheless, the worst-case complex-
ity is considerably lower for schema-based determinization. Experiments
confirm the relevance of this result in practice.
Show in Google map
Fri 4th Jun
10:00 am
12:30 pm
Add event to google
Séminaire Pierre Ohlmann
Zoom link: univ-lille-fr.zoom.us/j/95419000064



Titre: Lower bound for arithmetic circuits via the Hankel matrix

Abstract: We study the complexity of representing polynomials by arithmetic
circuits in both the commutative and the non-commutative settings. To
analyse circuits we count their number of parse trees, which describe the
non-associative computations realised by the circuit. In the non-commutative
setting a circuit computing a polynomial of degree d has at most 2^{O(d)}
parse trees. Previous superpolynomial lower bounds were known for circuits
with up to 2^{d^{1/3-ε}} parse trees, for any ε>0. Our main result is to
reduce the gap by showing a superpolynomial lower bound for circuits with
just a small defect in the exponent for the total number of parse trees,
that is 2^{d^{1-ε}}, for any ε>0. In the commutative setting a circuit
computing a polynomial of degree d has at most 2^{O(d \\log d)} parse trees.
We show a superpolynomial lower bound for circuits with up to 2^{d^{1/3-ε}}
parse trees, for any ε>0. When d is polylogarithmic in n, we push this
further to up to 2^{d^{1-ε}} parse trees. While these two main results hold
in the associative setting, our approach goes through a precise
understanding of the more restricted setting where multiplication is not
associative, meaning that we distinguish the polynomials (xy)z and yz).
Our first and main conceptual result is a characterization result: we show
that the size of the smallest circuit computing a given non-associative
polynomial is exactly the rank of a matrix constructed from the polynomial
and called the Hankel matrix. This result applies to the class of all
circuits in both commutative and non-commutative settings, and can be seen
as an extension of the seminal result of Nisan giving a similar
characterization for non-commutative algebraic branching programs. Our key
technical contribution is to provide generic lower bound theorems based on
analyzing and decomposing the Hankel matrix, from which we derive the
results mentioned above. The study of the Hankel matrix also provides a
unifying approach for proving lower bounds for polynomials in the
(classical) associative setting. We demonstrate this by giving alternative
proofs of recent lower bounds as corollaries of our generic lower bound
results.
Fri 28th May
10:00 am
11:00 am
Add event to google
Seminar Anastasia Dimou
Title: Knowledge graph generation and validation
Show in Google map
Fri 21st May
10:00 am
12:00 pm
Add event to google
Seminar Dimitrios Myrisiotis
Title : One-Tape Turing Machine and Branching Program Lower Bounds for MCSP
Abstract:
eccc.weizmann.ac.il/report/2020/103/

Speaker' webpage : dimyrisiotis.github.io/
Show in Google map
zoom
Fri 7th May
10:00 am
12:00 pm
Add event to google
Seminar Nicole Schweikardt
Title:
Spanner Evaluation over SLP-Compressed Documents

Abstract:
We consider the problem of evaluating regular spanners over compressed documents, i.e., we wish to solve evaluation tasks directly on the compressed data, without decompression. As compressed forms of the documents we use straight-line programs (SLPs) -- a lossless compression scheme for textual data widely used in different areas of theoretical computer science and particularly well-suited for algorithmics on compressed data. In terms of data complexity, our results are as follows. For a regular spanner M and an SLP S that represents a document D, we can solve the tasks of model checking and of checking non-emptiness in time O(size(S)). Computing the set M(D) of all span-tuples extracted from D can be done in time O(size(S) size(M(D))), and enumeration of M(D) can be done with linear preprocessing O(size(S)) and a delay of O(depth(S)), where depth(S) is the depth of S's derivation tree. Note that size(S) can be exponentially smaller than the document's size |D|; and, due to known balancing results for SLPs, we can always assume that depth(S) = O(log(|D|)) independent of D's compressibility. Hence, our enumeration algorithm has a delay logarithmic in the size of the non- compressed data and a preprocessing time that is at best (i.e., in the case of highly compressible documents) also logarithmic, but at worst still linear. Therefore, in a big-data perspective, our enumeration algorithm for SLP-compressed documents may nevertheless beat the known linear preprocessing and constant delay algorithms for non-compressed documents.
[This is joint work with Markus Schmid, to be presented at PODS'21.]

Link to the paper: arxiv.org/pdf/2101.10890.pdf for the paper at least
Link to the ACM video: TBA
Fri 30th Apr
10:00 am
12:00 pm
Add event to google
Présentation de NetworkDisk
Je présenterais mon projet avec Bruno: NetworkDisk.

Abstract and Title: TBA
link to the project: TBA

Fri 9th Apr
10:00 am
12:00 pm
Add event to google
Seminaire Pascal Weil
titre: Problèmes algorithmiques en théorie des groupes infinis
resumé:
Malgré le titre très général, il s'agira uniquement de problèmes concernant les sous-groupes de groupes infinis, et même juste les sous-groupes de groupes libres. Les résultats et méthodes que je présenterai sont issus de près de 40 ans de littérature et sont dûs à un grand nombre d'auteurs.

Je commencerai par poser le paysage, y compris pour ceux qui ne savent plus ce qu'est le groupe libre -- où l'on verra qu'on est, du point de vue algorithmique, dans une variante de la combinatoire des mots. Je présenterai ensuite l'outil central de la plupart des algorithmes efficaces sur les sous-groupes du groupe libre : la représentation de chaque sous-groupe finiment engendré par un graphe étiqueté et enraciné (disons : d'un automate :-)…) unique et facilement calculable à partir d'un ensemble de générateurs du sous-groupe considéré, qu'on appelle le graphe de Stallings.

Le jeu consiste ensuite à traduire les problèmes algorithmiques sur les sous-groupes en problèmes algorithmiques sur les graphes de Stallings, et à résoudre ces problèmes de la façon la plus efficace possible.

On considèrera notamment les problèmes suivants -- bon, juste le début de cette longue liste.
- Le problème du mot généralisé : étant donnés k+1 éléments du groupe libre (ce sont des mots), le dernier appartient-il au sous-groupe engendré par les k premiers ?
- Le problème de l'indice : étant donné un tuple d'éléments du groupe libre, le sous-groupe qu'ils engendrent est-il d'indice fini ?
- Le problème de la base : étant donné un tuple d'éléments du groupe libre, trouver le rang, et une base du sous-groupe qu'ils engendrent.
- Le problème de l'intersection : étant donnés deux tuples d'éléments du groupe libre, calculer l'intersection des sous-groupes qu'ils engendrent (ou calculer une base de cette intersection).
- Le problème de la conjugaison : étant donnés deux tuples d'éléments du groupe libre, engendrent-ils le même sous-groupe ? deux sous-groupes conjugués ?
- Et de nombreux autres problèmes (mots clés : minimalité de Whitehead, facteur libre, malnormalité, clôture par radical, clôture au sens de la topologie pro-p, etc…)


title: Algorithmic problems in the theory of infinite groups
abstract:
In spite of the very general title, we will talk only about problems on subgroups of infinite groups, and in fact, only on subgroups of free groups . The results and methods I will present have been obtained over the past 40 years and are due to many researchers.

I will start by setting the landscape, including for those who forgot what the free group is --- and we will see that we are dealing here, from the algorithmic point of view, with a variant of combinatorics on words. I will then present the tool that is central to most efficient algorithms on subgroups of free groups: the representation of each finitely generated subgroup by a labeled rooted graph (shall we say… an automaton?) which is unique and easily computable when a tuple of generators of the subgroup under consideration is given. This graph is called the Stallings graph.

The game consists, then, in translating algorithmic problems on subgroups into algorithmic problems on Stallings graphs, and in solving these problems as efficiently as possible.

We will discuss in particular the following problems (clearly: just the beginning of this long list).
- The generalized word problem: given k+1 elements of the free group (these are words), does the last one belong to the subgroup generated by the k first ones?
- The index problem: given a tuple of elements of the free group, does the subgroup they generate have finite index?
- The basis problem: given a tuple of elements of the free group, find the rank and a basis of the subgroup they generate.
- The intersection problem: given two tuples of elements of the free group, compute the intersection of the subgroups they generate (compute a basis of this intersection).
- The conjugacy problem: given two tuples of elements of the free group, are the subgroups they generate equal? conjugated?
- And many other problems (keywords: Whitehead minimality, free factors, malnormality, closure under radicals, closure in the sense of the pro-p topology, etc…)

Permanent link to this article: https://team.inria.fr/links/seminars/