Seminars

Links' Seminars and Public Events Add to google calendar
Fri, June 7, 2024
10:00 am
11:00 am
Add event to google
Séminaire Sam Van Gool dualité de Stone

Thu, May 30, 2024
to Fri, May 31, 2024
 all day
Add event to google
Pysemigroup Hackaton

Fri, May 24, 2024
11:00 am
11:30 am
Add event to google
Séminaire Sophie Tison
Speaker: Sophie Tison

Title: Containment of Regular Path Queries Under Path Constraints

Abstract:

Data integrity is ensured by expressing constraints it should satisfy. One can also view constraints as data properties and take advantage of them for several tasks such as reasoning about data or accelerating query processing. In the context of graph databases, simple constraints can be expressed by means of path constraints while simple queries are modeled as regular path queries (RPQs). In this paper, we investigate the containment of RPQs under path constraints. We focus on word constraints that can be viewed as tuple-generating dependencies (TGDs) of the form ∀x_1,x_2, ∃y⁻, a_1(x_1,y_1) ∧ ... ∧ a_i(y_{i-1},y_i) ∧ ... ∧ a_n(y_{n-1},x_2) ⟶ ∃z⁻, b_1(x_1,z_1) ∧ ... ∧ b_i(z_{i-1},z_i) ∧ ... ∧ b_m(z_{m-1},x_2). Such a constraint means that whenever two nodes in a graph are connected by a path labeled a_1 … a_n, there is also a path labeled b_1 … b_m that connects them. Rewrite systems offer an abstract view of these TGDs: the rewrite rule a_1 … a_n → b_1 … b_m represents the previous constraint. A set of constraints 𝒞 is then represented by a rewrite system R and, when dealing with possibly infinite databases, a path query p is contained in a path query q under the constraints 𝒞 iff p rewrites to q with R. Contrary to what has been claimed in the literature we show that, when restricting to finite databases only, there are cases where a path query p is contained in a path query q under the constraints 𝒞 while p does not rewrite to q with R. More generally, we study the finite controllability of the containment of RPQs under word constraints, that is when this containment problem on unrestricted databases does coincide with the finite case. We give an exact characterisation of the cases where this equivalence holds. We then deduce the undecidability of the containment problem in the finite case even when RPQs are restricted to word queries. We prove several properties related to finite controllability, and in particular that it is undecidable. We also exhibit some classes of word constraints that ensure the finite controllability and the decidability of the containment problem.
Thu, May 16, 2024
2:00 pm
4:00 pm
Add event to google
Seminar Arkaprava
Title: Efficient Optimization of Network Metrics in Large Uncertain
Graphs

Abstract: Graphs constitute an omnipresent data structure that can
model objects and their relationships in a wide variety of real-world
scenarios. The optimization of network metrics finds use in a plethora
of real-world applications. Most of the exact techniques for such tasks
turn out to be prohibitively time-consuming and memory-intensive for
the huge graphs that are usually encountered. Thus, there is a need for
efficient approximation algorithms. This talk focuses on the efficient
optimization of network metrics in large uncertain graphs, and
specifically the following three research problems. The first problem
aims to find, between a given pair of nodes in an uncertain graph, the
path having the highest probability of being a shortest path. The
second problem aims to find, in an uncertain graph, the subgraph having
the highest probability of being densest. The third problem is a novel
variant of the well-known opinion maximization problem where, given a
social network of users with real-valued opinions (about different
candidates), the goal is to choose the top-k seed users maximizing a
specific voting-based score at a given finite time horizon.
Best Regards,
Arkaprava
"Lieu : Lille, Salle : B11"
Fri, April 19, 2024
11:00 am
12:00 pm
Add event to google
Seminar Pierre Lermusiaux
Speaker: Pierre Lermusiaux (plermusi.github.io/)

Title: Detection of Uncaught Exceptions in Functional Programs by Abstract
Interpretation

Abstract:

Exception handling is a key feature in modern programming languages. Exceptions
can be used to deal with errors, or as a means to control the flow of execution
of a program. Since they might unexpectedly terminate a program, unhandled
exceptions are a serious safety concern. We propose a static analysis to detect
uncaught exceptions in functional programs, that is defined as an abstract
interpreter. It computes a description of the values potentially returned by a
program using a novel abstract domain, that can express inductively defined
sets of values. Simultaneously, the analysis infers the possibly raised
exceptions, by computing in the abstract exception monad. This abstract
interpreter has been implemented as an effective static analyser for a large
subset of OCaml programs, that supports mutable data types, the OCaml module
system, and dynamically extensible data types such as the exception type. The
analyser has been evaluated on several hundreds of OCaml programs.
Fri, April 5, 2024
10:30 am
11:30 am
Add event to google
Séminaire Guillaume Lagarde
Titre: Scaling Neural Program Synthesis with Distribution-based Search
Abstract:
In this talk, we will discuss the problem of automatically constructing
computer programs from input-output examples, especially when the
target language is domain-specific and defined using a context-free
grammar. I will introduce a theoretical framework called
distribution-based search, discuss its challenges, and present several
search strategies based on learning the weights of a probabilistic
context-free grammar (PCFG) and then using this PCFG to enumerate the
most promising candidate programs efficiently.
The presentation will be based on the following paper published at
AAAI'2022: arxiv.org/abs/2110.12485
Joint work with Nathanaël Fijalkow, Théo Matricon, Kevin Ellis, Pierre
Ohlmann, Akarsh Potta

Fri, February 2, 2024
10:30 am
11:30 am
Add event to google
Mikaël Monet: Probabiliste Shapley value

Fri, January 26, 2024
10:00 am
11:00 am
Add event to google
Séminaire: Klara Nosan
Sujet: TBA

Thu, December 14, 2023
2:00 pm
5:00 pm
Add event to google
Claire Soyez-Martin PhD defense
Show in Google map
Amphi IRCICA
Fri, December 1, 2023
10:00 am
11:00 am
Add event to google
Séminaire Oliver
Titre: Direct Access for Conjunctive Queries with Negation
Abstract:
Direct Access is the operation of returning, given an index j, the jth answer of a conjunctive query on a given database for a given order. While this problem is #P-hard in general (wrt combined complexity), many conjunctive queries are structured enough so that for some lexicographical ordering of their answers, one can have a direct access to the answer set of a query Q that takes polylogarithmic time in the size of the database after a polynomial time precomputation. Previous work has precisely characterised the tractable classes and given fined-grained lower bounds on the time needed for precomputation depending on the structure of the query. We give a generalisation of these tractability results to the case of signed conjunctive queries, that is, conjunctive queries that may contain negative atoms. Our technique is based on solving the direct access task for a class of circuits that can represent relational data. Our result then follows from the fact that the tractable (signed) conjunctive queries can be transformed into polynomial size circuits. We recover the known tractable classes from the literature in the case of positive conjunctive queries using this technique and also discover new islands of tractability for signed conjunctive queries. In particular, our result generalises to the Direct Access Problem the known tractabilities of counting the number of answers to beta-acyclic negative queries and of deciding whether a negative query with bounded nested-width has an answer. This is joint work with Florent Capelli.
Fri, November 24, 2023
10:00 am
11:00 am
Add event to google
Séminaire Pierre Vandenhove

Fri, November 17, 2023
10:00 am
11:00 am
Add event to google
Séminaire Charles (RsonPath)
TBA
Fri, November 10, 2023
10:00 am
11:00 am
Add event to google
Séminaire Nils Vortmeier
title: TBA
Fri, October 20, 2023
10:30 am
12:30 pm
Add event to google
Aurelien part II

Fri, September 22, 2023
11:00 am
12:00 pm
Add event to google
Séminaire Théo Losekoot
Title: Automata-based verification of relational properties of functions over algebraic data structures
Fri, September 15, 2023
11:00 am
12:30 pm
Add event to google
Charles: Présentation de rsonpath

Permanent link to this article: https://team.inria.fr/links/seminars/