Home

Links is a research team of Inria Lille, the University of Lille, and the CNRS (Cristal Lab).

Cake of Thursday

Links' News Add to google calendar
2020
Wed 2nd Dec
 all day
Add event to google
AAAI 2021 paper accepted by Florent Capelli et. al.
Certifying Top-Down Decision-DNNF Compilers
Wed 2nd Dec
 all day
Add event to google
AAAI 2021 paper by Mikaël Monet et al. accepted
The Tractability of SHAP-Score-Based Explanations over Deterministic and Decomposable Boolean Circuits. arXiv: arxiv.org/abs/2007.14045
Fri 13th Nov
 all day
Add event to google
PODS 2021 paper accepted Corentin Barloy, Filip Murlak and Charles Paperman
Stackless Processing of Streamed Trees paperman.name/data/pub.....d.pdf
Thu 1st Oct
 all day
Add event to google
Mikael Monet arrives as Junior Researcher
Thu 1st Oct
 all day
Add event to google
Corentin Barloy starts his PhD project
Tue 29th Sep
9:00 am
10:00 am
Add event to google
ANR Project of Florent Capelli accepted. On knowledge compilation
Tue 1st Sep
 all day
Add event to google
Arrival of Chérif Ba as engineer
Mon 24th Aug
9:00 am
10:00 am
Add event to google
MFCS paper accepted by Paul Gallot, Aurélin Lemay and Sylvain Salvati: https://hal.inria.fr/hal-02902853
Fri 24th Jul
2:30 pm
4:30 pm
Add event to google
Dr. Momar Sakho defended his PhD.
Mon 6th Jul
to Fri 10th Jul
 all day
Add event to google
École d'été Kocoon (cancelled) organisée par Florent Capelli, Pierre Marquis, Stefan Mengel, and Pierre Bourhis, à Lille
Tue 30th Jun
 all day
Add event to google
ICALP 2020 paper by Charles Paperman accepted
On Polynomial Recursive Sequences ( Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk and Géraud Sénizergues ) drops.dagstuhl.de/opus.....7.pdf
2019
Mon 16th Dec
to Thu 19th Dec
 all day
Add event to google
Workshop Kocoon at Arras, organized by Pierre Bourhis, Florent Capelli, Pierre Marquis and Stefan Mengel
More info at : kocoon.gforge.inria.fr/
Fri 27th Sep
 all day
Add event to google
Mikael Monet visiting

Team presentation

The appearance of linked data on the web calls for novel database management technologies for linked data collections. The classical challenges from database research need to be now raised for linked data: how to define exact logical queries, how to manage dynamic updates, and how to automatize the search for appropriate queries. In contrast to mainstream linked open data, the LINKS project will focus on linked data collections in various formats, under the assumption that the data is correct in most dimensions. The challenges remain difficult due to incomplete data, uninformative or heterogeneous schemas, and the remaining data errors and ambiguities. We will develop algorithms for evaluating and optimizing logical queries on linked data collections, incremental algorithms that can monitor streams of linked data and manage dynamical updates of linked data collections, and symbolic learning algorithms that can infer appropriate queries for linked data collections from examples.

Research themes

We will develop algorithms for answering logical querying on heterogeneous linked data collections in hybrid formats, distributed programming languages for managing dynamic linked data collections and workflows based on queries and mappings, and symbolic machine learning algorithms that can link datasets by inferring appropriate queries and mappings. Our main objectives are structured as follows:

  • Querying heterogeneous linked data. We will develop new kinds of schema mappings for semi- structured datasets in hybrid formats including graph databases, rdf collections, and relational databases. These induce recursive queries on linked data collections for which we will investigate evaluation algo- rithms, static analysis problems, and concrete applications.
  • Managing dynamic linked data. In order to manage dynamic linked data collections and workflows, we will develop distributed data-centric programming languages with streams and parallelism, based on novel algorithms for incremental query answering, will study the propagation of updates of dynamic data through schema mappings, and will investigate static analysis methods for linked data workflows.
  • Linking graphs. Finally, we will develop symbolic machine learning algorithms, for inferring queries and mappings between linked data collections in various graphs formats from annotated examples.

International and industrial relations

  • Stream Processing: QuiXTools (with Innovimax)
  • FUI Hermes

Permanent link to this article: https://team.inria.fr/links/