Presentation

CORSE has several job offers

CORSE is a joint research group in the LIG laboratory that regroups several expertise that stand at the interface between software and hardware: those are domain specific application/library tuning, compiler optimization, run-time systems, and debugging/monitoring. Our domains of application include performance (both speed and energy consumption), reliability, and teaching of computer science. An important activity concerns the optimization of machine learning applications for some specific high-performance embedded architectures.

Languages, compilers, and run-time systems are some of the most important components to bridge the gap between applications and hardware. With the continuously increasing power of computers, expectations are evolving, with more and more ambitious, computational intensive and complex applications. As desktop PCs are becoming a niche and servers mainstream, three categories of computing impose themselves for the next decade: mobile, cloud, and super-computing. Thus diversity, heterogeneity (even on a single chip) and thus also hardware virtualization is putting more and more pressure both on compilers and run-time systems. However, because of the energy wall, architectures are becoming more and more complex and parallelism ubiquitous at every level. Unfortunately, the memory-CPU gap continues to increase and energy consumption remains an important issue for future platforms. To address the challenge of performance and energy consumption raised by silicon companies, compilers and run-time systems must evolve and, in particular, interact, taking into account the complexity of the target architecture. The overall objective of CORSE is to address this challenge by combining static and dynamic compilation techniques, with more interactive embedding of programs and compiler environment in the runtime system.

CORSE project is structured along three main directions. The first direction belongs to the area of program analysis and optimization. This direction breaks down into:

  • Performance debugging, binary instrumentation, automatic characterization and simulation of architectures
  • Loop scheduling, data locality, I/O complexity
  • Compiler design, hybrid compilation, domain-specific intermediate representations

 

The second direction belongs to the area of runtime monitoring, verification, and enforcement. This direction breaks into:

  • Instrumentation for Java programs for performance and security
  • Monitoring of learning-enabled components using geometrical shape abstraction
  • Decentralization of the monitoring process for multi-threaded and distributed systems
  • Predictive monitoring of business processes

 

The third direction belongs to the area of teaching and tutoring of programming. This direction breaks into:

  • Libraries to assist teachers in building their own visualisation tools of program state
  • Tools and education of debugging
  • Problem based learning. Generation. Recommandation