Papers, please

Sessions “Papers, please”

Il s’agit de sessions de partage d’articles pour les participants aux thèses IA&Cyber de CIDRE qui sont ouvertes à tous les membres de l’équipe. L’évènement a lieu au 5e étage de CS et est retransmis sur Teams.

Prochaines sessions

~ Summer break ~


12/10/22 à 10h30: “” (présenté par Maxime Lanvin)


27/10/22 à 15h30: “” (présenté par Vincent Raulin)


10/11/22 à 15h30: “” (présenté par Hélène Orsini)


24/11/22 à 15h30: “” (présenté par Adrien Schoen)


08/12/22 à 15h30: “” (présenté par Pierre-François Gimenez)


Sessions passées

09/06/22 à 15h30: “A Tutorial on Energy-Based Learning” (présenté par Adrien Schoen)

Abstract: Energy-Based Models (EBMs) capture dependencies between variables by associating a scalar energy to each configuration of the variables. Inference consists in clamping the value of observed variables and finding configurations of the remaining variables that minimize the energy. Learning consists in finding an energy function in which observed configurations of the variables are given lower energies than unobserved ones. The EBM approach provides a common theoretical framework for many learning models, including traditional discriminative and generative approaches, as well as graph-transformer networks, conditional random fields, maximum margin Markov networks, and several manifold learning methods. Probabilistic models must be properly normalized, which sometimes requires evaluating intractable integrals over the space of all possible variable configurations. Since EBMs have no requirement for proper normalization, this problem is naturally circumvented. EBMs can be viewed as a form of non-probabilistic factor graphs, and they provide considerably more flexibility in the design of architectures and training criteria than probabilistic approaches.


19/05/22 à 15h30: “A Unified Approach to interpreting Model Predictions” (présenté par Maxime Lanvin)

Abstract: Understanding why a model makes a certain prediction can be as crucial as the prediction’s accuracy in many applications. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, such as ensemble or deep learning models, creating a tension between accuracy and interpretability. In response, various methods have recently been proposed to help users interpret the predictions of complex models, but it is often unclear how these methods are related and when one method is preferable over another. To address this problem, we present a unified framework for interpreting predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature an importance value for a particular prediction. Its novel components include: (1) the identification of a new class of additive feature importance measures, and (2) theoretical results showing there is a unique solution in this class with a set of desirable properties. The new class unifies six existing methods, notable because several recent methods in the class lack the proposed desirable properties. Based on insights from this unification, we present new methods that show improved computational performance and/or better consistency with human intuition than previous approaches.


05/05/22 à 15h30: “Understanding Attention and Generalization in Graph Neural Networks” (présenté par Hélène Orsini)

Abstract: We aim to better understand attention over nodes in graph neural networks (GNNs) and identify factors influencing its effectiveness. We particularly focus on the ability of attention GNNs to generalize to larger, more complex or noisy graphs. Motivated by insights from the work on Graph Isomorphism Networks, we design simple graph reasoning tasks that allow us to study attention in a controlled environment. We find that under typical conditions the effect of attention is negligible or even harmful, but under certain conditions it provides an exceptional gain in performance of more than 60% in some of our classification tasks. Satisfying these conditions in practice is challenging and often requires optimal initialization or supervised training of attention. We propose an alternative recipe and train attention in a weakly-supervised fashion that approaches the performance of supervised models, and, compared to unsupervised models, improves results on several synthetic as well as real datasets. Source code and datasets are available at https://github.com/bknyaz/graph_attention_pool.


21/04/22 à 15h30:  “Heterogeneous Graph Attention Network” (présenté par Vincent Raulin)

Abstract: Graph neural network, as a powerful graph representation technique based on deep learning, has shown superior performance and attracted considerable research interest. However, it has not been fully considered in graph neural network for heterogeneous graph which contains different types of nodes and links. The heterogeneity and rich semantic information bring great challenges for designing a graph neural network for heterogeneous graph. Recently, one of the most exciting advancements in deep learning is the attention mechanism, whose great potential has been well demonstrated in various areas. In this paper, we first propose a novel heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions. Specifically, the node-level attention aims to learn the importance between a node and its meta-path based neighbors, while the semantic-level attention is able to learn the importance of different meta-paths. With the learned importance from both node-level and semantic-level attention, the importance of node and meta-path can be fully considered. Then the proposed model can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner. Extensive experimental results on three real-world heterogeneous graphs not only show the superior performance of our proposed model over the state-of-the-arts, but also demonstrate its potentially good interpretability for graph analysis.


31/03/22 à 15h30: “Explainable Artificial Intelligence Approaches: A Survey” (présenté par Pierre-François Gimenez)

Abstract: The lack of explainability of a decision from an Artificial Intelligence (AI) based “black box” system/model, despite its superiority in many real-world applications, is a key stumbling block for adopting AI in many high stakes applications of different domain or industry. While many popular Explainable Artificial Intelligence (XAI) methods or approaches are available to facilitate a human-friendly explanation of the decision, each has its own merits and demerits, with a plethora of open challenges. We demonstrate popular XAI methods with a mutual case study/task (i.e., credit default prediction), analyze for competitive advantages from multiple perspectives (e.g., local, global), provide meaningful insight on quantifying explainability, and recommend paths towards responsible or human-centered AI using XAI as a medium. Practitioners can use this work as a catalog to understand, compare, and correlate competitive advantages of popular XAI methods. In addition, this survey elicits future research directions towards responsible or human-centric AI systems, which is crucial to adopt AI in high stakes applications.


17/03/22 à 15h: “Efficient Graphlet Counting for Large Networks” (​présenté par Maxime Lanvin)

Abstract: From social science to biology, numerous applications often rely on graphlets for intuitive and meaningful characterization of networks at both the global macro-level as well as the local micro-level. While graphlets have witnessed a tremendous success and impact in a variety of domains, there has yet to be a fast and efficient approach for computing the frequencies of these subgraph patterns. However, existing methods are not scalable to large networks with millions of nodes and edges, which impedes the application of graphlets to new problems that require large-scale network analysis. To address these problems, we propose a fast, efficient, and parallel algorithm for counting graphlets of size k={3,4}-nodes that take only a fraction of the time to compute when compared with the current methods used. The proposed graphlet counting algorithms leverages a number of proven combinatorial arguments for different graphlets. For each edge, we count a few graphlets, and with these counts along with the combinatorial arguments, we obtain the exact counts of others in constant time. On a large collection of 300+ networks from a variety of domains, our graphlet counting strategies are on average 460x faster than current methods. This brings new opportunities to investigate the use of graphlets on much larger networks and newer applications as we show in the experiments. To the best of our knowledge, this paper provides the largest graphlet computations to date as well as the largest systematic investigation on over 300+ networks from a variety of domains.


03/03/22 à 15h30: “On the Security Risks of AutoML” (présenté par Hélène Orsini)

Abstract: Neural architecture search (NAS) represents an emerging machine learning (ML) paradigm that automatically searches for model architectures tailored to given tasks, which significantly simplifies the development of ML systems and propels the trend of ML democratization. Yet, thus far little is known about the potential security risks incurred by NAS, which is concerning given the increasing use of NAS-generated models in critical domains. This work represents a solid initial step towards bridging the gap. First, through an extensive empirical study of 10 popular NAS methods, we show that compared with their manually designed counterparts, NAS-generated models tend to suffer greater vulnerabilities to various malicious manipulations (e.g., adversarial evasion, model poisoning, functionality stealing). Further, with both empirical and analytical evidence, we provide possible explanations for such phenomena: given the prohibitive search space and training cost, most NAS methods favor models that converge fast at early training stages; this preference results in architectural properties associated with attack vulnerabilities (e.g., high loss smoothness, low gradient variance). Our findings not only reveal the relationships between model characteristics and attack vulnerabilities but also suggest the inherent connections underlying different attacks. Finally, we discuss potential remedies to mitigate such drawbacks, including increasing cell depth and suppressing skip connects, which lead to several promising research directions.


17/02/22 à 15h30:  “PcapGAN: Packet Capture File Generator by Style-Based Generative Adversarial Networks” (présenté par Adrien Schoen)

Abstract: After the advent of GAN technology, many varied models have been studied and applied to various fields such as image and audio. However, in the field of cyber data, which has the same issue of data shortage, the research on data augmentation is insufficient. To solve this problem, we propose PcapGAN that can augment pcap data, a kind of network data. The proposed model includes an encoder, a data generator, and a decoder. The encoder subdivides network data into four parts. The generator generates new data for each part of the data. The decoder combines the generated data into realistic network data. We demonstrate the similarity between the generated data and original data, and validation of the generated data by increased performance of intrusion detection algorithms.


10/02/22 à 15h30: “MetaGraph2Vec: Complex Semantic Path Augmented Heterogeneous Network Embedding” (présenté par Vincent Raulin)

Abstract: Network embedding in heterogeneous information networks (HINs) is a challenging task, due to complications of different node types and rich relationships between nodes. As a result, conventional network embedding techniques cannot work on such HINs. Recently, metapath-based approaches have been proposed to characterize relationships in HINs, but they are ineffective in capturing rich contexts and semantics between nodes for embedding learning, mainly because (1) metapath is a rather strict single path node-node relationship descriptor, which is unable to accommodate variance in relationships, and (2) only a small portion of paths can match the metapath, resulting in sparse context information for embedding learning. In this paper, we advocate a new metagraph concept to capture richer structural contexts and semantics between distant nodes. A metagraph contains multiple paths between nodes, each describing one type of relationships, so the augmentation of multiple metapaths provides an effective way to capture rich contexts and semantic relations between nodes. This greatly boosts the ability of metapath-based embedding techniques in handling very sparse HINs. We propose a new embedding learning algorithm, namely MetaGraph2Vec, which uses metagraph to guide the generation of random walks and to learn latent embeddings of multi-typed HIN nodes. Experimental results show that MetaGraph2Vec is able to outperform the state-of-the-art baselines in various heterogeneous network mining tasks such as node classification, node clustering, and similarity search.

Comments are closed.