Funded by Labex CominLabs Dates : October 2021 – December 2024
The LeanAI project aims at developing a comprehensive and flexible framework for mixed-precision optimization. The project is motivated by the increasing demand for intelligent edge devices capable of on-site learning, driven by the recent developments in deep learning. The realization of such systems is a massive challenge due to the limited resources available in an embedded context and the massive training costs for state-of-the-art deep neural networks. In this project we attack these problems at the arithmetic and algorithmic levels by exploring the design of new mixed numerical precision algorithms, energy-efficient and capable of offering increased performance in a resource-restricted environment. The ambition of the project is to develop more flexible and faster techniques than existing reduced-precision gradient algorithms, by determining the best numeric formats to be used in combination with this kind of methods, rules to dynamically adjust the precision and extension of such techniques to second-order and multilevel strategies.