Return to Projects

ANR DataRedux

Dates : February 2020 – January 2024  Identifier: ANR-19-CE46-0008

​Big data reduction for ​predictive computational modelling

DataRedux puts forward an innovative framework to reduce networked data complexity while preserving its richness, by working at intermediate scales (“mesoscales”). Our objective is to reach a fundamental breakthrough in the theoretical understanding and representation of rich and complex networked datasets for use in predictive data-driven models. Our main novelty is to define network reduction techniques in relation with the dynamical processes occurring on the networks. To this aim, we will develop methods to go from data to information and knowledge at different scales in a human-accessible way by extracting structures from high-resolution, diverse and heterogeneous data. Our methodology will involve the identification of the most relevant subparts of time-resolved datasets while remapping the remaining parts of the system, the simultaneous structural-temporal representations of time-varying networks, the development of parsimonious data representations extracting meaningful structures at mesoscales (“mesostructures”), and the building of models of interactions that include mesostructures of various types. Our aim is to identify data aggregation methods at intermediate scales and new types of data representations in relation with dynamical processes, that carry the richness of information of the original data, while keeping their most relevant patterns for their manageable integration in data-driven numerical models for decision making and actionable insights.