MathNeuro Seminar (David Terman, Ohio State)

Prof. David Terman (Department of Mathematics, Ohio State University, USA)

Title: Role of gap junctions in a neuron astrocyte network model
Abstract: A detailed biophysical model for a neuron/astrocyte network is developed in order to explore mechanisms responsible for the initiation and propagation of cortical spreading depolarizations and the role of astrocytes in maintaining ion homeostasis, thereby preventing these pathological waves. Simulations of the model illustrate how properties of spreading depolarizations, such as wave-speed and duration of depolarization, depend on several factors, including the neuron and astrocyte Na-K ATPase pump strengths. In particular, we consider the neuroprotective role of astrocyte gap junction coupling. The model demonstrates that a syncytium of electrically coupled astrocytes can maintain a physiological membrane potential in the presence of an elevated extracellular potassium concentration and efficiently distribute the excess potassium across the syncytium. This provides an effective neuroprotective mechanism for delaying or preventing the initiation of spreading depolarizations.
October 17, 1:30PM, Euler “Violet”

Comments are closed.