Virginie Ehrlacher (Galland)


CERMICS, ENPC (Researcher)


Contact information

CERMICS – ENPC     Bâtiment Coriolis B312
6 et 8 avenue Blaise Pascal
Cité Descartes – Champs sur Marne
77455 Marne la Vallée Cedex 2 (FRANCE)

Tel: + 33 1 64 15 35 14
Fax: + 33 1 64 15 35 86

E-mail: virginie.ehrlacher @

You will find here a copy of my resume.


PhD thesis

Some mathematical models in quantum chemistry and uncertainty quantification (AbstractThesis)

Done at the CERMICS (ENPC), under the supervision of Eric Cancès and Tony Lelièvre. Defended on the 12th of July 2012.



PI of the ANR JCJC project COMODO (CrOss-diffusion equations in MOving Domains, webpage of the project).

Member of the ANR JCJC project ADAPT (PI: Damiano Lombardi)

Member of the ERC Synergy project EMC2 (PIs: Eric Cancès, Laura Grigori, Yvon Maday, Jean-Philip Piquemal)



Virginie Ehrlacher, Greta Marino, Jan-Frederik Pietschmann,  Existence of weak solutions to a cross-diffusion Cahn-Hilliard type system, (2020), pdf

Virginie Ehrlacher, Tony Lelièvre, Pierre Monmarché,  Adaptive force biasing algorithms: new convergence results and tensor approximations of the bias, (2019), pdf

Virginie Ehrlacher, Laura Grigori, Damiano Lombardi, Hao Song, Adaptive hierarchical subtensor partitioning for tensor compression, (2019), pdf



20- Aurélien Alfonsi, Rafaël Coyaud, Virginie Ehrlacher, Damiano Lombardi,  Approximation of  optimal transport problems with marginal moment constraints,  accepted for publication in Mathematics of Computation, 2020, pdf

19- Eric Cancès, Virginie Ehrlacher, Frédéric Legoll, Benjamin Stamm, Shuyang Xiang, An embedded corrector problem for homogenization. Part I: Theory, accepted for publication in Multiscale Modeling and Simulation, 2020, pdf

18- Virginie Ehrlacher, Damiano Lombardi, Olga Mula, François-Xavier Vialard, Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces, accepted for publication in ESAIM: M2AN, 2020, pdf

17- Eric Cancès, Virginie Ehrlacher, David Gontier, Antoine Levitt, Damiano Lombardi, Numerical quadrature in the Brillouin zone for periodic Schrödinger operators, Numerische Mathematik, 2020, p. 1–48, pdf

16- Eric Cancès, Virginie Ehrlacher, Frédéric Legoll, Benjamin Stamm, Shuyang Xiang, An embedded corrector problem for homogenization. Part II: Algorithms and discretization, Journal Of Computational Physics, 2020, p. 109254, pdf

15- Amina Benaceur, Alexandre Ern, Virginie Ehrlacher,  A reduced basis method for parametrized variational inequalities applied to contact mechanics, to appear in International Journal for Numerical Methods in Engineering, 2019, pdf

14- Judith Berendsen, Martin Burger, Virginie Ehrlacher, Jan-Frederik Pietschmann, Uniqueness of strong solutions and weak-strong stability in a system of cross-diffusion equations, Journal of Evolution Equations, 2019, p. 1–25, pdf

13- Athmane Bakhta, Virginie Ehrlacher, David Gontier, Numerical reconstruction of the first band(s) in an inverse Hill’s problem, to appear in ESAIM:COCV, 2019, pdf

12- Thomas Boiveau, Virginie Ehrlacher, Alexandre Ern, Anthony NouyLow-rank approximation of linear parabolic equations by space-time tensor Galerkin methods, ESAIM: M2AN, 53(2), 2019, p. 635–658, pdf

11- Amina Benaceur, Virginie Ehrlacher, Alexandre Ern, Sébastien Meunier,  A progressive reduced basis/empirical interpolation method for nonlinear parabolic problems, SIAM J. Sci. Comput., 40(5), A2930–A2955 (2018), pdf

10- Athmane Bakhta, Virginie Ehrlacher, Cross-diffusion systems with non-zero flux and moving boundary conditions, ESAIM:M2AN, 52(4), 2018, p.1385–1415, pdf

9- Virginie Ehrlacher and Damiano Lombardi, A dynamical adpative tensor method for the resolution of the Vlasov-Poisson system,  Journal of Computational Physics, 339, 2017, p. 285–306, pdf

8- Virginie Ehrlacher, Christoph Ortner and Alexander V. Shapeev, Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations, ARMA, 222(3), 2016, p. 1217–1268, pdf

7- Eric Cancès, Virginie Ehrlacher, Frédéric Legoll and Benjamin Stamm, An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation, Comptes-Rendus Mathématiques, 353(9), 2015, p. 801–806, pdf

6- Eric Cancès, Virginie Ehrlacher and Tony Lelièvre, Greedy algorithms for high-dimensional eigenvalue problems, Constructive Approximation, 40, 2014, pp 387-423, pdf

5- Eric Cancès, Virginie Ehrlacher and Yvon Maday, Non-consistent approximations of self-adjoint eigenproblems: Application to the supercell method, Numerische Mathematik, 128, 2014, pp 663–706, pdf

4- Eric Cancès, Virginie Ehrlacher and Yvon Maday, Periodic Schrödinger Operators with Local Defects and Spectral Pollution, SIAM J. Numer. Anal., 50(6), 2012, pp 3016–3035, pdf

3- Eric Cancès, Virginie Ehrlacher and Tony Lelièvre, Convergence of a greedy algorithm for high-dimensional convex problems, M3AS, 21(12), 2011, pp 2433-2467, pdf

2- Eric Cancès and Virginie Ehrlacher, Local defects are always neutral in the Thomas-Fermi-von Weiszäcker theory of crystals, Arch. Rational Mech. Anal., 202, 2011, pp 933-973, pdf

1- Geoffroy Hautier, Chris Fischer, Virginie Ehrlacher, Anubhav Jain and Gerbrand Ceder, Data Mined Ionic Substitutions for the Discovery of New Compounds, Inorganic Chemistry, 50 (2), 2011, pp 656–663, pdf


5- Virginie Ehrlacher, Convergence results on greedy algorithms for high-dimensional eigenvalue problems, ESAIM: PROCEEDINGS AND SURVEYS, 2014, 45, pp. 148-157, pdf

4- Houssam Alrachid, Virginie Ehrlacher, Alexis Marceau and Karim Tekkal, Statistical methods for critical scenarios in aeronautics,  ESAIM: PROCEEDINGS, 2014, 41, pp 95-131, pdf

3- Eric Cancès, Virginie Ehrlacher and Tony Lelièvre, Greedy algorithms for high-dimensional linear non-symmetric problems,  ESAIM: PROCEEDINGS, 2013, 41, pp 95-131, pdf

2- Amaury Delamarre, Laurent Lombez, Jean-François Guillemoles, Virginie Ehrlacher, Tony Lelièvre and Eric Cancès, Investigation of solar cell properties by absolute measurement of spatially and spectrally resolved luminescence. In Proc. 27th Eur. PV Solar Energy Conf. Exhib, 2012, pp 497-499.

1- Virginie Ehrlacher, Convergence of a Greedy Algorithm on Nonlinear Convex Problems and Application to Uncertainty Quantification on Obstacle Problems, ASME Proceedings, 3rd Joint US-European Fluids Engineering Summer Meeting, 2010, pp 2905-2912, pdf







Comments are closed.