Équipe associée avec IIIT-Delhi

The Federated Automated Deep Learning (FedAutoMoDL) project is a joint collaboration between Inria and IIIT-Delhi funded within the framework of the Inria Associate Team program. Principle Investigators: Malcolm Egan (Inria) and Bapi Chatterjee (IIIT-Delhi). FedAutoMoDL Inria Associate Team While DNNs have had a huge impact on algorithm design for image and…

Lire la suite

CHASER

Channel Charting as a Service
(2023-2026, CHIST-ERA)

https://chaser-project.github.io/

Channel charting (CC) is an emerging application of self-supervised machine learning to wireless communication which leverages the fact that wireless communications systems continuously collect data about the electromagnetic propagation channel. This data, known as channel state information (CSI), is high-dimensional and acquired at fast rates but typically discarded immediately after use. In contrast, CC recycles acquired CSI data by means of dimensionality reduction to learn a so-called channel chart. This channel chart is essentially a low-dimensional representation of the CSI with the salient property that users who are close in the channel chart are also close in physical space. Put simply: CC is a method that produces a pseudo-location with no recourse to classical positioning methods, potentially opening up a range of location-based applications to operate with significantly reduced overhead. The objective of CHASER is to develop methods and algorithms allowing to implement network-wide CC, and to develop its predictive capabilities when applied to real-world use cases involving multiple base stations or access points, heterogeneous users and dynamically changing environments, with the ultimate goals of developing CC into a robust and versatile pseudo-positioning method to assists a number of network functions and user-level applications.

PEPR Réseaux du futur

PEPR Réseaux du futur

https://pepr-futurenetworks.fr/

Dans la dynamique de France Relance, la 5G et les futures technologies de réseaux de télécommunications ont été identifiées comme un marché cible à fort potentiel de croissance sur lequel la France dispose de réelles capacités. L’État a lancé le 6 juillet 2021 une stratégie d’accélération dédiée, afin de faire de la 5G un outil de compétitivité industrielle et de repositionner la France à la pointe sur les futures technologies de réseaux. Dans le cadre de cette stratégie, le gouvernement a décidé de soutenir l’activité de R&D à travers le Programme et Équipements Prioritaires de Recherche PEPR 5G et Réseaux du Futur. Le pilotage scientifique de ce PEPR a été confié au CEA, au CNRS et à l’IMT.

Nous participons aux projets ciblés (PC) suivants :

  • PC3 PERSEUS : Réseaux « cell-free massive MIMO » à faible consommation énergétique pour les fréquences sub-7GHz
  • PC9 FOUND : Fondements des futurs réseaux de communication
  • PC10 FPNG : Réseau français de plateforme de test pour les nouvelles Générations des communications mobiles 

WARM-M2M

Waveforms and Resource Management for M2M over large areas (2024-2028, Agence Nationale de la Recherche)

The objective of the WARM-M2M project is to develop novel physical layer (PHY) and medium access control (MAC) layers approaches, radio access protocols and distributed coordination mechanisms for massive M2M scenarios allowing multiple low earth orbit satellites to jointly serve a massive number of nodes with sporadic traffic, under controlled reliability and/or latency constraints, achieving a high area spectral efficiency at the network scale, with limited IoT device complexity and protocol overhead. In WARM-M2M, we develop novel waveforms and channel coding/decoding and feedback approaches capable to deal with the specificities of large-scale, sporadic IoT communications involving non-terrestrial platforms.

Instinct

Joint Sensing and Communications for Future Interactive, Immersive, and Intelligent Connectivity Beyond Communications (2024-2026, EU Smart Networks and Services JU)

instinct-6g.eu

  

The INSTINCT project is going to enable sustainable, interactive, immersive, and intelligent ‘beyond communications’ 6G connectivity with 13 partners from 5 different european countries. The project wants to achieve the development of three complementary but critical breakthrough technology pillars during its three-years duration:sensing-assisted communication technologies, thus allowing localization, tracking, mapping, monitoring, imaging, incident detection and semantics become integral parts of connectivity services intelligent surfaces, holographic radios and cell free systems, which offer wavefront engineering functionalities and tuneability of the wireless environment and can act as reconfigurable and intelligent sensors, andMachine Learning techniques-based co-design of Sensing and Communications (Pillar 3)These pillars will result in three demonstrators – two hardware and one software demonstrations for interactive, immersive and intelligent connectivity in 6G usage scenarios.