Présentation:
Le séminaire Open MAMBA est un séminaire interne mais ouvert à tous, ayant lieu une fois par mois sur le site INRIA Paris. Les présentations sont effectuées par les étudiants en thèse/post-doctorant de l’équipe MAMBA et le séminaire a pour buts:
- Renforcer l’esprit d’équipe en centrant les présentations sur les jeunes membres de l’équipe MAMBA (étendue)
- Apporter plus de math-bio au centre INRIA (en complément des rencontres INRIA-LJLL)
- Favoriser les échanges scientifiques sur les projets en cours, chaque présentation étant suivie par une discussion informelle par les chercheurs.
Le séminaire aura lieu une fois par mois les lunid de 13h30 à 15h au centre INRIA Paris. Il est composé de 2 présentations de 30 minutes chacune suivies de discussions de 15mn.
Localisation:
INRIA Paris, 2 rue Simone Iff (voir Comment s’y rendre), Salle ‹‹ Jacques-Louis Lions ››, bâtiment C
NB: Une carte d’identité sera demandée à l’entrée du batiment
Organisateurs:
Diane Peurichard: diane.a.peurichard@inria.fr
Dirk Drasdo: dirk.drasdo@inria.fr
Présentations:
Lundi 17 juin 2019, 13h30, salle de séminaire du L. J-L. Lions
1. Mathieu Mezache
Title: Testing for high-frequency features in a noisy signal: applications to prion aggregation process experiments
Abstract: We present a procedure which detects high frequency (HF) features in a noisy signal. We propose a parametric characterization on the Fourier domain of the HF features. Then we introduce a procedure to evaluate these parameters and compute a p-value which assesses in a quantitative manner the presence or absence of such features, that we also call ”oscillations”. The procedure is well adapted for real 1-dimensional signals. If the signal analyzed has singular events in the low frequencies, the first step is a data-driven regularization of its Fourier transform. In the second step, the HF features parameters are estimated. The third step is the computation of the p-value thanks to a Monte Carlo procedure. The test is conducted on signals from Prion disease experiments.
2. Hugo Martin
Title: Hétérogénéité des durées des durées des cycles cellulaires de levures en l’absence de télomérase : analyse de données et modélisation
Abstract:
Je commencerai par présenter rapidement les résultats obtenus par nos collègues
biologistes et ceux obtenus lors d’une précédente collaboration entre nos deux équipes, puis je parlerai de mes résultats, qui consistent en une réanalyse des données expérimentales et un peu de modélisation.
Lundi 11 mars 2019, 13h30, salle de séminaire du L. J.L. Lions:
Cecile Della Valle
Titre: Inverse problem and regularization method applied to protein dynamics
Julia Delacour
Abstract: Cellular autophagy is a key pathway that allows the cell to degrade nocive or dysfunctional elements (such as old mitochondriae), and that has been involved in a wide range of disease from neurodegenerative to cancer. In this talk, we will introduce and study a model for p_{62}-Ubiquitin aggregates, that have been shown (Zaffagnini et al., 2018) to play a key-role in cellular autophagy. We will begin by introducing the model for the formation of one p_{62}-Ubiquitin aggregate. We will exhibit three different regimes of this model, supported by numerical simulations that will be shown. We will then present the mathematical analysis of each regime that requires some dynamical systems theory tools. Finally, if time is left, we will briefly introduce the equation for the formation of several p_{62}-Ubiquitin aggregates, that is just a transport-coagulation equation directly derived from the previous model.
Lundi 21 janvier 2019
Laura Kanzler
Lundi 19 mars 2018
1.Hugo Martin
Titre: Measure solution for the classical size-equation with linear growth rate
Abstract: In a recent paper, E. Bernard, M. Doumic and P. Gabriel showed the existence of a cyclic asymptotic bahaviour of the solution of the size-equation with linear growth rate in a weighted L^2 space which consists in a Fourier serie built on the eigenfunctions of the model. On another hand, P. Gabriel recently solved the age Equation and showed a relation with the related principal eigenfunction. We are now wondering how this behaviour appear for measure solutions in the case of the size Equation. After defining what a measure solution to a PDE is, I will explain the semigroups methods we attempt to use to obtain the desired result and the difficulties we are already facing.
2. Camille Pouchol
Titre: Dirichlet control towards steady states for the 1D monostable and bistable equations
Abstract: I will talk about the problem of controlling parabolic semilinear equations arising in population dynamics, namely the 1D monostable and bistable equations on (0,L) for a density of individuals between 0 (extinction) and 1 (invasion), by means of Dirichlet controls between 0 and 1. I will explain why driving the system towards 0 or 1 asymptotically is always possible for the state 1, and for 0 as well if L is below some threshold value, computable by phase plane analysis. In the bistable case, I will prove that the other homogeneous steady state 0 < θ < 1, though unstable for the corresponding ODE, can be reached in finite time. The central tools are the phase portrait for the stationary problem, the parabolic maximum principle, and the staircase method in control theory.
Lundi 12 février 2018
1. Mathieu Mezache:
2. Martin Strugarek
Title: Mosquito population replacement: an optimal control viewpoint
(in collaboration with Luis Almeida, Yannick Privat (LJLL) and Nicolas Vauchelet (LAGA))
Abstract: Transinfection of Wolbachia bacteria is currently used in wild Aedes populations to suppress these mosquitoes’ ability to transmit some viruses (vector competence), in particular dengue viruses. This recently developed technique relies on the mass rearing and release of lab-infected individuals of both sexes. The introduced phenotype can replace the wild one thanks to an asymmetric sterile crossing known as cytoplasmic incompatibility (CI). It is expected to practically stop disease circulation and be very cost-efficient as the Wolbachia infection will maintain once established over many generations, thanks to almost perfect vertical transmission from mother to offspring. Our work aims at improving these so-called « Wolbachia population replacement strategies », using mathematical modeling to design the release sizes and timings (and, in future, locations). Here, we formulate this as an optimal control problem for an ODE system and prove qualitative properties of the optimal strategies under resource constraints. Numerical simulations illustrate these results. We also recover a bistable scalar equation on the proportion of infected individuals by a proper scaling of the parameters, and rigorously prove the convergence of the optimization problems to a limit problem for which uniqueness and explicit solution are established.
Lundi 22 janvier 2018
1. Yi Yin:
2. Jieling Zhao:
Title: A dynamic activator-inhibitor system to model liver fibrosis at early stage