Presentation

COHPC Project

 

This collaboration aims to develop methods and tools to aid developers with problems of correctness and performance in HPC applications for Exascale systems.

High Performance Computing (HPC) plays an important role in many fields like health, materials science, security or environment. The current supercomputer hardware trends lead to more complex HPC applications (heterogeneity in hardware and combinations of parallel programming models) that pose programmability challenges. As indicated by a recent US DOE report, progress to Exascale stresses the requirement for convenient and scalable debugging and optimization methods to help developers fully exploit the future machines; despite all recent advances these still remain manual complex tasks.

This collaboration aims to develop tools to aid developers with problems of correctness and performance in HPC applications for Exascale systems. There are several requirements for such tools: precision, scalability, heterogeneity and soundness. In order to improve developer productivity, we aim to build tools for guided code transformations (semi-automatic) using a combination of static and dynamic analysis. Static analysis techniques will enable soundness and scalability in execution time. Dynamic analysis techniques will enable precision, scalability in LoCs and heterogeneity for hybrid parallelism. A key aspect of the collaboration is to give precise feedback to developers in order to help them understand what happens in their applications and facilitate the debugging and optimization processes.

 

Comments are closed.