
A Short Visit to Distributed Computing
Where Simplicity is Considered

a First Class Property

Michel Raynal

Institut Universitaire de France
& IRISA, Université de Rennes, France
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Abstract. Similarly to the injunction “Know yourself” engraved on the
frontispiece of Delphi’s temple more than two millennia ago, the sentence
“Make it as simple as possible, but not simpler” (attributed to Einstein)
should be engraved on the entrance door of all research laboratories. At
the long run, what does remain of our work? Mathematicians and physi-
cists have formulas. We have algorithms! The main issue with simplicity
is that it is often confused with triviality, but as stated by J. Perlis,
the recipient of the first Turing Award, “Simplicity does not precede
complexity, but follows it”.

Considering my research domain, namely distributed computing, this
article surveys topics I was interested in during my career and presents
a few results, approaches, and algorithms I designed (with colleagues).
The design of these algorithms strove to consider (maybe unsuccessfully)
concision, generality, simplicity, and elegance as first class properties.
Said in other words, this article does not claim objectivity.
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1 Introduction

This article describes some of my past works in distributed computing in which
generality and simplicity where considered as first class citizens. These works
concern mainly causality and fault-tolerant agreement, topics that I consider as
belonging to the most fundamental topics of distributed computing.

Before entering the scientific part, the section that follows shortly presents
my view of my job (see [63] for an expanded view in French). Even if we disagree,
it is important for each of us to have a clear view of what is her/his job. This
can help us not only in making appropriate decisions, but also in providing us
with a clearer motivation to do what we have to do!



1.1 University professor: what does it mean? A personal view

The job of a University Professor combines research and teaching activities,
which are the two faces of a same coin. On the teaching side we are in the
domain of “organized truths” established and sieved by our predecessors and
recognized by the community as being the important knowledge that students
have to master to be able to benefit from it to understand, face, and solve
the problems they will encountered in their professional life [65]. In few words
“teaching is not an accumulation of facts” [42].

On the research side, we are in a domain of “uncertainty” where we do
not always know which are the most challenging and important topics among
the many possible paths, trying to progress to news ideas with backtracking,
hesitations and faith in what we are doing. It is important to never forget that
“it is not by improving the candle technology that electricity has been discovered
and understood and its applications have been mastered”.

Let us remark that, when looking at the curricula of master degrees, the
frontier between “organized truths” and “uncertainty” becomes permeable [65],
which is good news. The knowledge and the questioning of students create new
ideas and new approaches that entail an “industrial revolution” when they are
hired by companies. This is our main impact on the society. Our job is also
to ensure that today’s students will still have a job in twenty years! The pair
teaching/research is the key to attain this goal.

1.2 Content

As already said, this article describes some of my past works in distributed
computing in which generality and simplicity where considered as first class
citizens. These works concern mainly causality and agreement problems, topics
which are at the core of distributed computing.

1.3 Distributed computing

Since their first instances found in field-area or interest-rate computations at the
Babylonian times, algorithms have a very long history (see e.g., [38,39,56]), and
later, thanks to computing machinery [8,26,29,30], they constitute the heart of
informatics1.

Distributed computing was born in the late 1970s when researchers and prac-
titioners started taking into account the intrinsic characteristic of physically dis-
tributed systems. The field then emerged as a specialized research area distinct
from networking, operating systems, and parallel computing.

1 I do not like the words “computer science” and (as in a lot of European countries)
I use the word “informatics” [71]. This is not only to mimic the terms “mathematics”,
“physics”, “chemistry”, etc., but is due to the fact that when we use several words
to capture a scientific domain, the words we use are not equal. We do not have to
confuse the name of a scientific domain (single term) and a part of its definition. As
for concepts: a scientific domain, a term.



Distributed computing arises when one has to solve a problem in terms of pre-
defined distributed entities (usually called processors, nodes, processes, actors,
agents, sensors, peers, etc.) such that each entity has only a partial knowledge of
the many parameters involved in the problem that has to be solved. The comput-
ing entities are pre-defined and imposed to the distributed system programmer,
whose job consists in designing and implementing distributed abstractions (com-
munication abstractions, agreement abstractions, memory abstractions, cooper-
ation abstractions, etc.) that will be used by upper layer distributed applications.
While parallel computing and real-time computing can be characterized, respec-
tively, by the terms efficiency and on-time computing, distributed computing
can be characterized by the term uncertainty2. This uncertainty is created by
asynchrony, multiplicity of control flows, absence of shared memory and global
time, failure, dynamicity, mobility, etc. Mastering one form or another of uncer-
tainty is pervasive in all distributed computing problems. A main difficulty in
designing distributed algorithms comes from the fact that no entity cooperating
in the achievement of a common goal can have an instantaneous knowledge of
the current state of the other entities, it can only know some of their past local
states.

Although distributed algorithms are often made up of a few lines, their be-
havior can be difficult to understand and their properties hard to state and prove.
Hence, distributed computing is not only a fundamental topic but also a chal-
lenging topic where simplicity, elegance, and beauty are first-class citizens [3,21].

2 Causal Message Delivery

2.1 A causality-related problem

Let us consider consider a reliable asynchronous message-passing system made
up of n processes p1, ..., pn, where i the identity of pi. Causal message deliv-
ery was introduced by K.P. Birman and T.A. Joseph in [10]. This notion, much
debated when it was proposed [11], is now well-established and used in many
distributed systems. Based on Lamport’s happened-before relation [40], it re-
quires that, if the sending of two messages m and m′ are causally dependent,
m be delivered before m′. In the context where each message is broadcast to all
processes, this means that no process deliver m′ before m.

A simple example is described in Fig. 1. As the sending of the messages m1

and m2 are independent, these messages may be delivered in different order at
distinct processes. Differently, m3 depends on m1 but does not depend on m2.
So, m1 must be delivered before m3 at any process, while m2 and m3 can be
delivered in different order at different processes. If follows that the execution

2 In distributed computing, the computing entities are imposed to the programmer
who has to allow them to correctly cooperate [64]. In parallel computing, the defini-
tion and the creation of the computing entities are under the control of the program-
mer: the main issue is to benefit from data independence to accordingly decompose
a problem in independent sub-problems.
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Fig. 1. Illustration of causal broadcast

depicted on the right side respects causal message delivery while the one on the
left side does not (process p3 delivers m3 before m1).

2.2 A very simple algorithm

The first algorithm implementing causal message delivery required each message
to piggyback all the messages belonging to it causal past [10]. Differently the
very simple algorithm proposed in [67] (joint work with by A. Schiper and S.
Toueg) described in Fig. 2, requires each message to carry a digest of it causal
past (captured with an array of integers with one entry per process).

The operations offered to the upper application layer are denoted co broadcast
and co delivery.

operation co broadcast(m) is (code for pi)
(01) for each j ∈ {1, ..., n} \ {i} do send (m, broadcasti[1..n]) to pj end for;
(02) broadcasti[i]← broadcasti[i] + 1;
(03) local co delivery of m to the application layer.

when (m, broadcast[1..n]) is received from pj do
(04) wait

(
∀k : broadcasti[k] ≥ broadcast[k]

)
;

(05) local co delivery of m to the application layer;
(06) broadcasti[j]← broadcasti[j] + 1.

Fig. 2. Causal message delivery broadcast [67]

Each process manages a local array, denoted broadcasti[1..n] initialized to
[0, · · · , 0]. The entry broadcasti[j] counts the number of messages co-broadcast
by pj as known by pi. A process pi “knows the co-broadcast of a message m”
when it co-delivers m. The key of the algorithm is the co-delivery predicate
(line 04) which states that a message become co-deliverable when all the mes-
sages belonging to its causal past have been co-delivered. Using the technique
developed in [35], the size of the control information can be reduced to the
minimum that is possible.



Other causal delivery algorithms are described in [62]. An efficient causal
message delivery algorithm that copes with process crashes is described in [48].

3 Causality-Related Issues in Distributed Checkpointing

The notions and results presented in this section are due to joint work with R.
Baldoni, J.M. Hélary, A. Mostéfaoui, and R. Netzer.

3.1 On the consistency of distributed global states

A distributed execution can be represented by a partial order on the inter-
nal/send/receive events produced by the processes [40]. This partial order gen-
erates an “equivalent” partial order on the local states of the processes produced
by these events.
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Fig. 3. Example of a distributed execution

As an example let us look at Fig. 3 that describes a simple distributed exe-
cution involving three processes pi, pj and pk. As in Fig. 1, an horizontal axis
is associated with each process, and small rectangles describe a subset of the
process local states. The messages m1, .., m7 exchanged by the processes are
represented by up-to-down or down-to-up arrows.

A consistent global state of the execution is made up of one local state per
process, plus the messages that are in transit with respect to these local states.
As an example the global state ⟨c1i , c1j , c1k⟩ is a consistent global state in which
the channels are empty except the channel from pk to pj which contains the
message m3. Differently the global state ⟨c2i , c1j , c1k⟩ is not consistent (the message

m2 appears as not sent in c1j and as received in c2i (such a message is called an
orphan message). The first algorithm that computes consistent global states was
proposed by Chandy and Lamport in 1985 [18].

3.2 Z-dependency: zigzag paths and z-cycles

Definitions As shown on the figure, let us assume that, independently of each
other, each process saves some of its local states in order to define a global
checkpoint (global state) from which the computation can be safely restarted.



In such a context the important question becomes: given a set of local states
(at most one per process), do these local states belong to a consistent global
checkpoint?

To answer this question, given two local states c1 and c2, let us define two
notions of a path from c1 to c2. Let p(c1) and p(c2) be the processes that saved
the local states c1 and c2, respectively.

– Causal path from c1 to c2 (introduced in [40]), denoted c1
cp→ c2, if

• c1 and c2 have been been produced by the same process with c1 first, or
• there is a sequence of messages m1, ...,my such that (a) m1 was sent by

p(c1), (b) my was received by p(c2), and (c) for 1 < x < y the process
that sent mx has previously received mx−1.

We can see that c0i
cp→ c2k, and ¬

(
c0k

cp→ c2i
)
.

– Interval between two local states. Let interval Ixi be the sequence of events
produced by pi between its two consecutive local states cxi and cx+1

i .

– Zigzag path from c1 to c2 (introduced in [34,55]), denoted c1
zz→ c2, if %

• c1
cp→ c2, or

• there is a sequence of messages m1, ...,my such that (a) m1 was sent by
p(c1), (b) my was received by p(c2), and (c) for 1 < x < y, p(cx), the
process that sent mx, sent mx and received mx−1 in the same interval.

We can see that c0k
zz→ c2i (due to the fact that pj received m3 and sent m2

in the same interval).
– A Z-cycle is a zigzag path from a local state to itself. We can see that, due

the messages m5 and m7 that are sent and received by pi in the very same
interval, we have c2k

zz→ c2k.

As we are about to see, the notion of a zigzag path captures hidden causality.

3.3 A few results on distributed checkpointing: two theorems

Let a useless local state be a local state that cannot belong to a consistent global
state. This means that a distributed checkpointing algorithm must prevent a
process from saving such local states.

Let us associate an integer (a local date from an operational point of view)
with each local state c saved by a process. Hence, this integer is denoted c.date.
The two following theorems are proved in [31]. Let C be the directed graph the
vertices of which are the local states saved by the processes and the directed
edges are defined by the zigzag paths connecting local states.

Theorem 1.
(
∀ c1, c2 ∈ C : (c1

zz→ c2) ⇒ c1.date < c2.date)
)
⇔ C is z-cycle-free.

This theorem shows that all the checkpointing algorithms ensuring the z-
cycle-freedom property implement (in an explicit or implicit way) a consistent
logical dating of the local checkpoints (the time notion being here Lamport’s
clocks). It follows that, when considering the algorithms that implement explic-
itly such a consistent dating system, the local checkpoints that have the same
date belong to the same consistent global checkpoint.



Theorem 2. Let us assume that the initial state of each process is a local check-
point dated 0. Let C be a z-cycle-free set of local checkpoints saved during dis-
tributed execution, in which the date of each (non-initial) local checkpoint c is

such that c.date = max{c′.date | c′ zz−→ c} + 1. Let us associate with each local
checkpoint c the global checkpoint S = [c1, ..., cn] where ci is the last local check-
point of pi, such that ci.date ≤ c.date. Then, S includes c and is consistent.

As we can see, this theorem provides us with an operational tool (logical
linear time) to design checkpointing algorithms. These algorithms are based
on implicit synchronization. Independently from the other processes, each pro-
cess can take local checkpoints (called spontaneous checkpoints) according to
the needs of the upper layer applications. To prevent useless checkpoints, pro-
cesses are required to add control information to application messages (let us
notice that there are no pure control messages). This control information is
then used by the receiver process to decide if this message reception has to en-
tail the saving of a non-spontaneous (also called forced) local checkpoint. These
algorithms are called communication-induced checkpointing algorithms. The in-
terested reader will consult the following references where are presented such
algorithms [31,32,33]. These algorithms differ in the notion of time used to
capture causality and track zigzag paths. The most elaborate algorithms use
vector time. A survey on checkpointing algorithms is presented in Chapter 12
of [62]. While some communication-induced checkpointing algorithms generate
less forced checkpoints than others, it is shown in [9] that –from the point of
view of the number of forced checkpoints– there is no optimal communication-
induced checkpointing algorithm. Intuitively, this relies on the fact that when a
process is forced to take a local checkpoint c, the communication pattern that
will occur in the future will maybe make c not needed to obtain consistent global
checkpoints, and this cannot be known in advance.

4 A Visit to Read/Write Registers

4.1 Atomic read/write register

Read/write registers are fundamental: they are the universal objects sequential
computing is based on, namely, they are the cells of the Turing machine tape
(that can only be written and read).

In a concurrency context the processes need to communicate, which means
that the same register can be accessed concurrently by several processes. Hence
different types of read/write registers have been defined by Lamport [41]. They
differ in the values that a read operation returns in the presence of a concurrent
writing. These are named safe, regular, and atomic. While regular (resp. atomic)
registers offers an abstraction layer higher than safe (resp. regular) registers, they
have the same computability power in asynchronous systems where any number
of processes may crash (a crash is an unexpected and definite halt). Chapters
11-13 of [61] survey algorithms building multivalued multi-reader multi-writer



atomic registers from single-reader single-writer safe bits. The correctness of an
atomic read/write register is defined by the following safety property.

– The operations invoked by the processes appear as if they have been executed
sequentially (where a read returns the value of the closest preceding write),
and this sequence respects real time order (i.e., if a read or write operation
op1 terminates before a read or write operation op2 starts, then op1 appears
before op2 in the sequence.

4.2 Read/write registers in crash-prone distributed systems

As read/write registers are the most basic objects of sequential computing, a
first step of distributed computing consists in building them on top of an asyn-
chronous crash-prone n-process system, where each pair of processes communi-
cate through a reliable asynchronous channel.

On the negative side The first result is an impossibility result due to Attiya,
Ben Or, and Dolev [5], who prove the following theorem (the proof is based on
an indistinguishability argument [6]).

Theorem 3. There is no algorithm that builds an atomic read/write register in
an asynchronous message-passing system in which any number of processes may
crash.

On the positive side The authors of [5] have also shown in the same article that
atomic read/write registers can be be built in asynchronous message-passing
systems in which a majority of processes do not crash. Let us assume that
local processing times have zero duration and message transfer delays are upper
bounded by∆ (this bound remains always unknown to the processes, so it cannot
be used in the algorithms). The upper bounds on operations are 2∆ (i.e., a round
trip delay) for a write and 4∆ for a read. Moreover, in addition to read and
written values, messages have to carry sequence numbers.

operation concurrency/failure context duration

write always 2∆

read if no concurrent write 2∆

read if concurrent write 3∆

read if crashing concurrent write 4∆

Table 1. Time efficiency of the algorithm described in [54]

Many other algorithms are described in the literature, that strive to reduce
the size of the control information piggybacked on the messages that are ex-
changed, or the maximal duration of the read and write operations. Among



them, the algorithm described in [52] uses messages whose control information
is reduced to two bits. The algorithm presented in [54] (joint work with A.
Mostéfaoui and M. Roy) focuses on time efficiency. Its features are described in
Table 1.

4.3 Read/write registers in the presence of Byzantine failures

While in the crash failure model, a process behaves correctly (i.e., executes cor-
rectly its algorithm), this is no longer the case when processes commit Byzantine
failures [57]. In such a failure model, some process (maliciously or not) behave
arbitrarily, i.e. they do have the behavior specified by their algorithm.

In this case, the multi-writer register model is inoperative as a Byzantine pro-
cess can corrupt all registers. So, the appropriate model is then the single-writer
multi-reader model. The memory is seen as an array M [1..n], such that, while
all processes can read all the registers, only pi can write M [i]. Two important
results are presented in [37]. The first one proves the following theorem.

Theorem 4. There is no algorithm that builds an array of single-writer multi-
reader atomic read/write registers in an n-process asynchronous message-passing
system in which n/3 or more processes are Byzantine.

The second result is a signature-free algorithm that builds an array M [1..n]
of single-writer multi-reader atomic read/write registers in an n-process asyn-
chronous message-passing system in which less than n/3 processes are Byzantine.

Given such a Byzantine-tolerant memory, the solution to some problems be-
comes simple. As an example let us consider the write/snapshot problem. Pro-
cesses can invoke once the operation write snapshot(). This operation allows a
process pi to deposit a value and obtains a set of pairs ⟨j, u⟩ where u is a value
deposited by pj . The problem is defined by the following properties. Let outputi
be the set of pairs returned to pi. A non-faulty process is a process that is not
Byzantine.

– Termination. The invocation of write snapshot(). by a non-faulty process ter-
minates.

– Self-inclusion. If pi is non-faulty and invokes write snapshot(v), ⟨i, v⟩ ∈ outputi.
– Containment. If pi and pj are non-faulty and both invoke write snapshot(),

then outputi ⊆ outputj or outputj ⊆ outputi.
– Validity. If pi and pj are non-faulty and ⟨j, u⟩ ∈ outputi, then pj invoked the

operation write snapshot(u).

The reader can check that, assuming a Byzantine-tolerant array M [1..n] of
single-writer multi-reader atomic registers (hence assuming less than n/3 Byzan-
tine processes) the algorithm described in Fig. 4 implements a write/snapshot
object. Each process pi manages two local arrays aux1i[1..n] and aux2i[1..n]
in which it stores two consecutive asynchronous reading of the shared memory
M [1..n] (this is usually called double-collect).



operation write snapshot(vi) is (code for pi)
(01) M [i]← vi;
(02) for x ∈ {1, ..., n} do aux1[x]←M [x] end for;
(03) for x ∈ {1, ..., n} do aux2[x]←M [x] end for;
(04) while (aux1 ̸= aux2) do
(05) aux1← aux2;
(06) for x ∈ {1, ..., n} do aux2[x]←M [x] end for
(07) end while;
(08) outputi ← { ⟨j, aux1[j]⟩ | aux1[j] ̸= ⊥ };
(09) return(outputi).

Fig. 4. Implementing a Byzantine-tolerant write/snapshot object [37]

5 A Fundamental Need: to Agree and Cooperate

5.1 Read/write registers are not universal in asynchronous
crash-prone message passing systems

Looking for universality seems to be inherent to mankind. In informatics, pro-
gramming languages, compilers and operating systems are well-known examples
of this universality endeavor. As already indicated, from an object point of view,
read/write registers are universal in sequential computing. Moreover, as we have
seen, they can be built on top of crash-prone asynchronous message-passing sys-
tems in which a majority of processes do not crash. But are they universal in
these crash-prone systems?

To this end let us consider all the objects that can be defined by a sequential
specification (e.g., the set of traces on their operations that describe all their
correct behaviors)3. Stacks and queues are such familiar objects. It appears that,
while all these objects can be built in failure-free asynchronous message-passing
systems, not all of them can be built in the presence of asynchrony and process
crashes even if a majority of processes do not crash, i.e., even if read/write
registers can be built. More generally, read/write registers are not universal
in asynchronous message-passing systems as soon as even a single process can
crash [23,36].

This is due to the fact that the processes need to agree on a single order
in which the operations they invoke must be applied to the object. Such an
agreement is captured by the so-called consensus object.

5.2 Consensus: a fundamental object

Consensus provides the processes with a one-shot operation denoted propose()
which allows a process to propose a value v (input parameter) and obtains a
value as the result of its invocation (we say a process decides a value). It is
defined by the following properties in the crash failure model.

3 The case of objects defined by a concurrent specification is addressed in [14]. A more
practical approach is presented in [15].



– Termination. If a process invokes propose() and does not crash, it decides.
– Agreement. No two processes decide different values.
– Validity (non-triviality). The decided value is a proposed value.

Given a sequence of consensus objects, universal constructions can be designed
for asynchronous read/write or message-passing systems in which a majority of
processes do not crash (see e.g., [25,36,58,68] to cite a few). These construc-
tions are based on the well-known state machine replication paradigm [40]. Each
process proposes to successive consensus instances its current local view of the
operations invoked but –from its point of view– not yet applied to the object.
It follows from the properties of the consensus object that one of these views is
decided and imposed to all the processes [64]4.

5.3 Bad news and good news

Bad news Despite its great practical interest to build distributed services en-
capsulated in a state machine (automaton), it appears that consensus can not
be solved in the presence of asynchrony and the possible crash of even a single
process. The first proof for message-passing systems was given in [23] (and it is
usually named FLP according to thr names of its authors). The first proof for
read/write registers was given in [43]. Many other proofs of this impossibility
results have later appeared in the literature, e.g., [72].

Good news Several approaches have been proposed to circumvent the previous
impossibility result. Among them there are the following ones.

– Restrict the asynchrony of the system [22].
– Enrich the system with information on failures. This is the failure detector-

based approach introduced in [17]. Given an impossible problem to solve, it
consists in providing the processes with the weakest information on crash
failures that allows to solve it. As far as consensus is concerned, it has been
shown in [16] that the eventual leader failure detector (denoted Ω) is the
weakest failure detector that allow to solve consensus.

– Enrich the system with additional power provided with random numbers [7].
– Restrict the pattern of input vectors. This is the condition-based approach

described below.

Several consensus algorithms based on each of the previous approaches are de-
scribed in Chapter 17 of [64].

5.4 The condition-based approach

Intuition This approach was introduced in [49] (common work with S. Rajsbaum
and A. Mostéfaoui). As a simple introductory example, let us consider the case of

4 A generalization of the consensus object used to build a universal construction in-
volving several objects is presented in [1]. This universal construction uses also k-set
agreement objects [19].



binary consensus where only the values 0 and 1 can be proposed, and assume that
(a) at most one process may crash, and (b) it is a priori known that one of the
values is proposed by more than a majority of processes. In this case, consensus
can be easily solved: each process sends its value to all others processes, waits
until it has received values from (n − 1) processes and decides the majority
value it has received. The additional knowledge on the 0/1 pattern of the input
vector provides enough information to solve consensus. This is the essence of the
condition-based approach: restrict the set of input vectors so that consensus can
be solved, while having the the greatest possible set of input vectors.

Notations

– V denotes the set of values that can be proposed.
– equal(a, I) denotes the number of occurrences of the value a in the input

vector I.
– dist(I1, I2) denotes the Hamming distance between the vectors I1 and I2

(the number of entries in which they differ).
– max(I) denotes the greatest value in the vector I.

x-Legality A set S of input vectors is x-legal if there is a function h : S 7→ V
with the following properties:

– ∀ I ∈ S : #h(I)(I) > x,

– ∀ I1, I2 ∈ S :
(
h(I1) ̸= h(I2)

)
⇒

(
dist(I1, I2) > x

)
.

Definition A condition C is a set of input vectors satisfying x-legality.
The intuition that underlies this definition is the following. Given a condition

C, each of its input vectors I allows a proposed value to be selected in order
to be the value decided by the processes. That value is extracted from an input
vector by the function h(), namely h(I) is the value decided from input vector I.

To this end, h() and all vectors I of C have to satisfy some constraints.
The first constraint states that the value that the processes have to decide from
I (this value is h(I)) has to be present enough in vector I. “Enough” means
“more than x times”. This is captured by the first constraint defining x-legality:
∀ I ∈ C : #h(I)(I) > x.

The second constraint states that, if different values are decided from different
vectors I1, I2 ∈ C, then I1 and I2 must be “far apart enough” from one another.
This is to prevent processes that would obtain different views of the input vector
from deciding differently. This is captured by the second constraint defining x-
legality: ∀ I1, I2 ∈ C :

(
h(I1) ̸= h(I2)

)
⇒

(
dist(I1, I2) > x

)
.

An example of condition Let Cx
max be the set of input vectors defined as follows:

Cx
max

def
= {I | equal(a, I) > x where a = max(I)}.

It is easy to see that the set of input vectors defining Cx
max satisfies the legality

properties (h(I) is max(I)) and hence the set Cmax is a condition. Moreover,



this condition is maximal, which means that, given any input vector I ′ /∈ C,
the set C ∪ {I ′} is not a condition (it does not satisfy the legality properties.
More developments on conditions and the associated computability/complexity
hierarchy can be found in [49,50,64].

Condition-based consensus A condition-based consensus algorithm for asyn-
chronous system in which processes communicate through read/write registers
and up to 1 ≤ t < n processes may crash is described in [49]. The condition
must be t-legal. When t < n/2 this algorithm can easily be adapted to work in
a message-passing system.

Condition-based approach vs error correcting codes It appears that conditions
exhibit a strong connection relating consensus and error-correcting codes: each
input vector I encodes a value, namely the value that has to be decided from
I. In this sense an input vector can be seen as a code-word. More developments
on this connection involving both crash failures and Byzantine failures can be
found in [24] where, among other points, it is shown that %

– the impossibility of consensus in an n-process asynchronous system in which
up to fc ≥ 1 process may crash and fb < n processes are Byzantine, and

– the impossibility to build (fc, fb)-perfect codes

are the “same” impossibility (n is the length of the code words, a crash corre-
sponds to a missing digit –erasure–, and a value proposed by a Byzantine process
corresponds to a modified digit).

5.5 The case of Byzantine processes

This section presents three recent results concerning Byzantine-tolerant consen-
sus (common work with Z. Bouzid, A. Mostéfaoui, and H. Moumen).

Optimal Byzantine-tolerant binary consensus A round-based Byzantine-tolerant
randomized binary Byzantine consensus algorithm, which closed a problem open
since 30 years, is presented in [46]. More precisely, this algorithm has the fol-
lowing noteworthy features (no previous algorithm has all of them).Let t denote
the maximal number of Byzantine processes.

– The algorithm requires t < n/3 and is consequently optimal with respect to t.
– The algorithm uses a constant number of communication steps per round.
– The expected number of rounds to decide is constant.
– The message complexity is O(n2) messages per round.
– Each message carries a type, a round number and a constant number of bits.
– Byzantine processes may re-order messages sent to correct processes.
– The algorithm uses a weak coin. Weak means here that, given an integer

d ≥ 2, (1) with probability 1/d the non-Byzantine processes obtain the value
0, (2) with probability 1/d, the non-Byzantine obtain the value 1, and (3)
with probability (d − 2)/d, some non-Byzantine processes obtain the value
0 while the other non-Byzantine processes obtain the value 1. (A perfect
common coin corresponds to the case d = 2.)



A pre-processing algorithm extending the above Byzantine-tolerant algo-
rithm to multivalued consensus is presented in [53].

A weakest synchrony assumption for Byzantine-tolerant consensus As in case of
crash failures, it is possible to enrich the system with synchrony assumption so
that Byzantine-tolerant Consensus can be solved when t < n/3.

Each bi-directional communication channel is replaced by two uni-directional
channels. (This is to be as general as possible as it becomes possible to associate
different transfer delays with each direction of a bi-directional channel.)

Let us consider the channel connecting a process p to a process q. This
channel is eventually timely if there is a finite time τ and a bound δ, such that
any message sent by p to q at time τ ′ ≥ τ is received by q by time τ ′ + δ. Let us
observe that neither τ nor δ are known by the processes.

An eventual ⟨t + 1⟩bisource is a non-Byzantine process p that has (a) even-
tually timely input channels from t correct processes and (b) eventually timely
output channels to t correct processes (these input and output channels can
connect p to different subsets of processes).

It is shown in [12] that the existence of an eventual ⟨t + 1⟩bisource is the
weakest synchrony assumption that allows Byzantine-tolerant consensus to be
solved. This article presents also an algorithm based on this assumption.

Never decide a value proposed only by Byzantine processes While the value de-
cided in a any Byzantine-tolerant binary consensus algorithm is always a value
proposed by a correct process [64], this is no longer the case for multivalued
consensus. Nevertheless, some applications require to never decide a value pro-
posed only by Byzantine processes. To answer this issue two approaches have
been investigated.

– Accept to decide a default value (e.g., ⊥) when not enough non-Byzantine
processes propose the same value. This is the approach presented in [51]
where is introduced the notion of validated broadcast.

– Always decide a value proposed by a correct processes. This is possible if and
only if there is a value v that is proposed by at least (t+ 1) non-Byzantine
processes. A randomized algorithm based on this necessary requirement that
always decide a value proposed by a correct process is presented in [47].

6 Miscellaneous: There is no End to Research

6.1 Symmetry breaking

Among the symmetry breaking problems [13], leader election is one of the most
important. It was conjectured in a 1989 PODC article that three read/write
registers were necessary to elect a leader in failure-free n-process system where
communication is through atomic read/write registers, and the participation of
each process is required. We refuted this conjecture in [27] where is presented
an election algorithm which uses a single read/write register. Moreover the size
of this register is bounded (i.e., there is no forever increasing values).



6.2 Anonymous memory

While the notion of anonymous processes has been studied since a long time,
the notion of an anonymous memory has been introduced only very recently by
G. Taubenfeld in [73].

Let us consider a shared memory REGmade up ofm atomic read/write regis-
ters. Such a memory can be seen as an array with m entries, namely REG[1..m].
In a non-anonymous memory system, for any index x, 1 ≤ x ≤ m, if two or more
processes invoke the address REG[x] they access the very same register. This
a priori agreement no longer exists in a memory-anonymous system. In such a
system the very same address identifier REG[x] invoked by a process pi and
invoked by a different processpj does not necessarily refer to the same atomic
register. More precisely, a memory-anonymous system with m registers is such
that:

– For each process pi, an adversary defines a permutation fi() over the set
of indexes {1, 2, · · · , ,m}, such that when pi addresses REG[x], it actually
accesses REG[fi(x)], and

– no process knows the permutations.

Despite the strong disagreement on memory addresses, anonymous memories
allow us to model biological cell modification. It is shown in [59,60] how the
process of genome-wide epigenetic modifications, which allows cells to utilize
the DNA, can be modeled as an anonymous shared memory system where, in
addition to the shared memory, also the processes (that are proteins modifiers)
are anonymous. In such an anonymous memory context, we have recently solved
basic concurrency-related problems. More precisely,

– deadlock-free mutual exclusion is solved in [2] where it is also shown that,
assuming that the processes communicate by reading and writing anonymous
registers, the predicate AM-Mutex “m is relatively prime with all the integers
∈ {2, · · · , n}” (which relates the size m of the anonymous memory and the
number n of processes) is a necessary and sufficient condition,

– leader election is solved [28], where it is also shown that leader election is
possible if and only if gcd(m,n) = 1.

6.3 Fully anonymous systems

In a fully anonymous system, (a) processes cannot be distinguished the ones
from the others (they have no name, have the very same code, and the same
initialization), and (b) all the registers of the anonymous memory are initialized
to the same default value. So an important question that naturally comes to
mind is: what can be done in such a concurrent computing model. We answered
this question in [69] for mutual exclusion by

– showing that it is impossible on top of read/write registers only,
– designing a fully anonymous deadlock-free mutual exclusion algorithm based

on read/write/compare&swap registers, and



– showed that the previous AM-Mutex predicate is a necessary and sufficient
condition for such an algorithm in the full anonymity context.

Other algorithms solving consensus and more generally set agreement problems
in fully anonymous systems are described in [70]. Computability issues in fully
anonymous systems is addressed in chapter 5 of [66] and in [74].

6.4 Self-stabilization

Recently, thanks to E. Schiller, I became interested in an old topic introduced
by Dijkstra in 1974 [20], namely self-stabilization [4,20]. We used this technique
to make basic communication and agreement abstractions tolerant to transient
failures (in addition to crash failures). A self-stabilizing set-constrained delivery
broadcast algorithm is described in in [44] and an algorithm binary consensus
algorithm is presented in [45].

7 By Way of Conclusion

Still in quest of concision and simplicity, I conclude with the last sentence of
a letter from Blaise Pascal (French mathematician and philosopher, 1623-1662)
to one of his friend “Excuse me for having written such a long letter, I had not
enough time to write a shorter one.” 5
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5 As Pascal was both a mathematician and philosopher, I can’t resist the pleasure of
quoting the following joke (but is it really a joke?):
- Question from A to B: Do you know the difference between a mathematician and
a philosopher?
- After some time, answer of B: ... ???
- Answer from A to B: There is no difference, both use a sheet of paper and a pencil,
... [and after some time], oh, I was forgetting, the mathematician uses also an eraser!



Remark

As all of you, I have been asked the following question many times (often from
PhD students): What is a good paper?

At the very beginning (when I was younger, i.e. in the previous millennium!)
my answer was mainly based on an objective numerical criterion, namely, a good
paper is “a paper with numerous citations”. Later I was saying “a paper that
won the best paper award in a top conference”. Still later I was saying “a paper
that won a prize devoted to more than ten years old papers”, etc.

But over time, none of these integer-based definitions fully satisfied me, and
I started thinking to the papers that I myself consider as very important papers
... and I discovered that those were papers I was a little bit kindly jealous ... not
to be a co-author! This was because, those are papers I like to read (and reread)
because they are nicely written, their content go beyond their technical content,
they introduce new ideas in a simple and efficient way, and have a very strong
impact on the community. This is the effect of good papers: everyone makes
them ”theirs”, assimilating them and passing the essence of them to students.
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46. Mostéfaoui A., Moumen H., and Raynal M., Signature-free asynchronous binary
Byzantine consensus with t < n/3, O(n2) messages, and O(1) expected time.
Journal of ACM, 62(4), Article 31, 21 pages (2015)
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52. Mostéfaoui A. and Raynal M., Two-bit messages are sufficient to implement atomic
read/write registers in crash-prone systems. Proc. 35th ACM Symposium on Prin-
ciples of Distributed Computing (PODC’16), ACM Press, pp. 381-390 (2016)
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