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2 Context
Self-organizing overlays are a class of epidemic distributed protocols that allow a set of distributed
nodes to construct “emergent” topologies in a robust, efficient, and highly scalable manner. Initially
proposed 15 years ago [10, 13], they have since been applied to an extensive range of problems, from
peer-to-peer recommendation [2, 5, 6, 9, 12], to distributed topology construction [3, 4], and KNN graph
computation [7].

Self-organizing overlays (SOOs) assume a distance1 function d(−,−) on participants (1), and seek to
construct for each participant u ∈ Π, a neighborhood N(u) (or view) of its k closest peers (2).

d : Π×Π → R
(u, v) d(u, v).

(1)

N(u) ∈ argmin
S⊆Π\{u}:|S|=k

∑
v∈S

d(u, v), (2)

Starting from a random configuration, SOOs usually combine two stochastic processes to achieve this
goal, that execute in periodic rounds:

• Relying on a Random Peer Sampling Service (RPS) [11], each node periodically probes some random
peers and improve its current view accordingly.

• In parallel, each node periodically requests the view of one of its neighbors, chosen at random, and
uses these new participants (these ‘friends-of-friends’) to improve its view.

Experimentally, SOOs have been shown to converge particularly rapidly in many situations, in a
number of rounds that is proportional to the logarithm of the size of the system O(log(|Π|)) (see for
instance Figure 1), but no proof of this result has been proposed yet.

3 Objective
The supervisors and a previous intern, Lucie Guillou, have recently developed a formal analysis of the
convergence of an SOO algorithm based on partitions of the search space. The SOO algorithm works
in a one-dimensional space of 2` identifiers and repeatedly partitions this space using limited peer-to-
peer exchanges to construct local views of k neighbors. The formal analysis provides a proof that this
algorithm converges to top-k neighborhoods with high probability in log(n) rounds.

This internship aims to perform an in-depth experimental analysis of a generalization of this algorithm
to higher dimensions on real and synthetic datasets.

We would first like to consider the procedures described by Dong, Indyk, Razenshteyn, and Wagner
in [1] to transform a high-dimensional dataset into a one-dimensional one before applying our decentralized

1In some niche cases, d might not even be a distance.
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In Table 1 we summarize the parameters of the proto-
col. Note that K (target view size) is not a parameter of
the protocol but is part of the target graph characteriza-
tion. As such, it controls the size of the target graph, and
consequently, affects the running time of the protocol.
For example, if we increase K while keeping the ranking
method fixed, then the protocol will take longer to con-
verge since it has to find a larger number of links. In fact,
K could be omitted if the target graph was defined in some
other, more complex manner.

5. Key properties of the protocol

In this section we study the behavior of our protocol as
a function of its parameters, in particular, m (message
size), w (peer sampling parameter) and the ranking method
RANK. Based on our findings, we will extend the basic
version of the peer selection algorithm with a simple
‘‘tabu-list” technique as described below. Furthermore,
we analyze the storage complexity of the protocol and
conclude that on the average, nodes need OðlogNÞ storage
space where N is the network size.

To be able to conduct controlled experiments with
T-MAN on different ranking methods, we first select a graph
instead of a ranking method, and subsequently ‘‘reverse-
engineer” an appropriate ranking method from this graph
by defining the ranking to be the ordering consistent with
the minimal path length from the base node in the selected
graph. We will call this selected graph the ranking graph, to
emphasize its direct relationship with the ranking method.

Note that the target graph is defined by parameter K, so
the target graph is identical to the ranking graph only if the
ranking graph is K-regular. However, for convenience, in
this section we will not rely on K because we either focus
on the dynamics of convergence (as opposed to conver-
gence time), which is independent of K, or we study the
discovery of neighbors in the ranking graph directly.

In order to focus on the effects of parameters, in this
section we assume a greatly simplified system model
where the protocol is initiated at the same time at all
nodes, where there are no failures, and where messages
are delivered instantly. While these assumptions are
clearly unrealistic, in Section 6 we show through event-
based simulations that the protocol is extremely robust
to failures, asynchrony and message delays even in more
realistic settings.

5.1. Analogy with the anti-entropy epidemic protocol

In Section 3 we used an (unspecified) dissemination ap-
proach to define the overlay construction problem. Here
we would like to elaborate on this idea further. Indeed,
the anti-entropy epidemic protocol, one implementation
of such a dissemination approach, can be seen as a special
case of T-MAN, where the message size m is unlimited (i.e.,
m P N such that every possible node descriptor can be
sent in a single message) and peer selection is uniform ran-
dom from the entire network. In this case, independent of
the ranking method, all node descriptors that are present
in the initial views will be disseminated to all nodes. Fur-
thermore, it is known that full convergence is reached in
less than logarithmic time in expectation [25].

For this reason, the anti-entropy epidemic protocol is
important also as a base case protocol when evaluating
the performance of T-MAN, where the goal is to achieve
similar convergence speed to anti-entropy, but with the
constraint that communication is limited to exchanging a
constant amount of information in each round. Due to
the communication constraint, performance will no longer
be independent of the ranking method.

5.2. Parameter setting for symmetric target graphs

We define a symmetric target graph to be one where all
nodes are interchangeable. In other words, all nodes have
identical roles from a topological point of view. Such graphs
are very common in the literature of overlay networks. The
behavior of T-MAN is more easily understood on symmetric
graphs, because focusing on a typical (average) node gives a
good characterization of the entire system.

We will focus on two ranking graphs, both undirected:
the ring and a k-out random graph, where k random out-
links are assigned to all nodes and subsequently the direc-
tionality of the links is dropped. We choose these two
graphs to study two extreme cases for the network diame-
ter. The diameter (longest minimal path) of the ring is OðNÞ

after 2 cycles after 3 cycles after 4 cycles after 7 cycles

Fig. 3. Illustration of constructing a torus over 50 # 50 ¼ 2500 nodes, starting from a uniform random graph with initial views containing 20 random
entries and the parameter values m ¼ 20;w ¼ 10, K ¼ 4.

Table 1
Parameters of the T-MAN protocol.

RANK() Ranking method: determines the preference of nodes
as neighbors of a base node

D Cycle length: sets the speed of convergence but also the
communication cost

w Peer sampling parameter: peers are selected from the w most
preferred known neighbors

m Message size: maximum number of node descriptors that can be
sent in a single message

M. Jelasity et al. / Computer Networks 53 (2009) 2321–2339 2325

Figure 1: Convergence of a Self-Organizing Overlay with the T-Man algorithm executing on 2500 nodes,
taken from [10]

SOO algorithm and measuring key performance metrics. We plan to apply such procedures to the datasets
described in [8], and compare the obtained results to that of centralized solutions to approximate k-
neighbor search problems.

In a second stage, we plan to perform a sensitivity analysis using synthetic datasets in order to assess
to which extent key properties of the datasets (such as the distribution of pair-wise distances against that
of the average pair-wise distance) influence the results of our algorithm.
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