lrreia—
Reliable Broadcast

VS
Silent Churn
Davide Frey ﬁ

, , Michel Raynal, Francois

Cryptocurrency

No need for a Blockchain

[GKMPS19] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic,
Dragos-Adrian Seredinschi: “The Consensus Number of a Cryptocurrency”. PODC

2019: 307-316

[AFRT20] Alex Auvolat, Davide Frey, Michel Raynal, Francois Taiani: “Money Transfer
Made Simple: a Specification, a Generic Algorithm, and its Proof”. Bull. EATCS 132

(2020)

[CGKKMPPS20] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov,
Matteo Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi,
Andrei Tonkikh, Athanasios Xygkis: “Online Payments by Merely Broadcasting
Messages”. DSN 2020: 26-38

[BDS20] Mathieu Baudet, George Danezis, and Alberto Sonnino. 2020. FastPay: High-
Performance Byzantine Fault Tolerant Settlement. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies (AFT '20). Association for
Computing Machinery, New York, NY, USA, 163-177.

lrrzia—

All You Need is Broadcast

* Byzantine Reliable Broadcast

* Formally introduced
* 1984 Toueg (PODC 84)
e 1985 Bracha & Toueg (JACM 85)
1987 Bracha (1&C 87)

* Ensure that
* Correct processes: deliver the same set of messages
* This set includes all the messages they br-broadcast

Byzantine Reliable Broadcast

 Validity: If a correct process delivers a message m from a correct process p;
then p;broadcastm

* Integrity: No correct process delivers a message m more than once

* No-Duplicity: No two correct processes deliver distinct messages from p.

* Local Delivery: If a correct process p; broadcasts m then at least one correct
process eventually delivers it

* Global Delivery: If a correct process delivers a message m from p, then all
correct processes deliver m from p,

Introducing Silent Churn

* Typical work on distributed algorithms
* join/leave operation informing other processes

* announced disconnections / connections
* Not what happens in real systems

e Silent Churn
* Nodes can join or leave silently
Reflects the behavior of peer-to-peer systems
Model Silent Churn using Message Adversary
* No attendance lists
* Process ignore the online/offline state of other processes

Message Adversary

A message adversary is a (constrained) daemon that, at the
network level, eliminates messages sent by processes

Introduced in the context of synchronous networks by Santoro

e Santoro N. and Widmayer P., “Time is not a healer”. (STACS’89),
Springer LNCS 349, pp. 304-316 (1989)

e Santoro N. and Widmayer P., “Agreement in synchronous networks with

ubiquitous faults”. Theoretical Computer Science, 384(2-3): 232-249
(2007)

Message Adversary Definition

e Broadcast an (implementation) message
broadcast(v) {
for(iinl..n){
send (v) to p;
}
}

* For each such broadcast, the message adversary is allowed to
suppress up to d copies of v

* Remarks
* Byzantine processes do not necessarily use the broadcast macro
* d=0 <-> no message adversary

Modeling Silent Churn with a Message
Adversary

set D of d’ <= d processes

* adversary suppresses all the messages sent to the processes in
D,

* making them input disconnected
* size and content of D can vary over time as longasd’ < d

 Message adversary only constrains process inputs
 Model is perfect with event-based algorithms
* Open question as to what happens with general broadcast algorithms

4

lrrzia—

SCB, Silent Churn Broadcast, i.e.
BRB with Msg Adv/Silent Churn

 Validity: If a correct process delivers a message m from a correct process p;
then p;broadcastm

* Integrity: No correct process delivers a message m more than once

* No-Duplicity: No two correct processes deliver distinct messages from p.

* Local Delivery: If a correct process p; broadcasts m then at least one correct
process eventually delivers it

* Global Delivery: If a correct process delivers a message m from p, then at
most d correct processes do not deliver m from p;

Two Main Results

* SCB impossible if n<=3t + 2d

* SCB algorithm with signatures

lre

eea—

SCB Impossible if n<=3t+2d

e Extension of the well known result for BRB
e Same as BRB when d=0
e Same as unreliable fair channels when t=0

* Holds for event-driven protocols

* only send implementation messages in response to

* broadcast operation
* receipt of implementation messages

* Does it hold with spontaneous messages?
* we conjecture it does
* maybe...

Towards an SCB Algorithm

* Signature Free BRB (Bracha’s Algorithm)
 Signature-Based BRB
* Signature-Based SCB (Timothe’s Algorithm)

* Signature-Free SCB?

lre

eea—

Signature-Free BRB (Bracha)

operation br_broadcast(sn, m) is
(1) broadcast INIT(sn, m).

when a message INIT(sn, m) is received from p; do
(2) discard the message if it is not the first message INIT(sn, —) from p;;
(3) broadcast ECHO((j, sn), m).

when a message ECHO((j, sn), m) is received from any process do

(4) if (BECHO((j,sn), m) received from strictly more than 2} different processes)
A(READY ({7, sn), m) not yet broadcast)

5) then broadcast READY((j, sn), m)

(6) endif.

when a message READY ({7, sn), m) is received from any process do

(7) if (READY((j, sn), m) received from at least (¢ + 1) different processes)
A(READY ({7, sn), m) not yet broadcast)

(8) then broadcast READY((j, sn), m)

(9) endif;

(10) if (READY((j,sn), m) received from at least (2¢ + 1) different processes)
A ({j, sn), m) not yet br_delivered from p;)

(11) then br_delivery of (sn,m) from p;

(12) end if.

Signature-Based BRB (Timothé)

atomic operation r_broadcast(v) is

L oy + sign(v);

broadcast INIT(v, 0,);

when INIT(v,0,) is received do
if good(v, o,) A —alreadyRcvd(INIT(v, 0,)) then

Oy, < sign({v,0,));
L broadcast EcHO(v, 0,0,);

when EcHO(v, 04,04,);
is received do
if good(EcHO(v,04,0,,)) A malreadyRevd(ECcHO(v, 04, 0,,)) then

o, < sign((v,0y));
broadcast EcHO(v, 0,07,);
if numRevd(ECHO(v, 0, —)) > " then

| deliver(v);

If we add Message Adversary

 Safety is retained

e Liveness is lost

lre

eea—

Signature-Based SCB (Timothé)

1 atomic operation scb_broadcast(v) is
2 oy < sign(v);

3 | g, < sign((v,00));

4 broadcast ECHO(v, 0, 05,);

5 when ECHO(v,0,,0,,) is received do

6 if good(EcHO(v, 04,0,,)) A —received(ECHO(v, 04, 0,,)) then
7 if —alreadySent(EcHO(v, 0, —)) then

8 o, <+ sign((v,0u));

9 broadcast ECHO(v, 0y, 07,);

10 if numRevd(EcHO(v, 0y, —)) > % then
11 quorum; < received ECHO's;
12 broadcast QUORUM (v, o, quorum,);

13 when QUORUM(v, 0y, quorum,) is received do

14 | if good(QUORUM(v, 0y, quorum;)) then

15 recordReceivedEchos(QUORUM(v, 0., quorum;,));

16 if numRevd(EcHO(v, 0y, —)) > 2% A —delivered then
17 broadcast QUORUM (v, 6, quorum,);

18 delivered < TRUE;

19 deliver(v);

eea—

Signature-Based SCB

* Two main changes
e Collapse ECHO and INIT
* (OR send ECHO without INIT)

e Additional Communication Round

* QUORUM message
* make sure everyone reaches quorum of ECHOs

lre

eea—

Collapse ECHO and INIT

1 atomic operation r_broadcast(v) is

2 Oy < sign(v);
3 broadcast INIT(v, 0y,);

~

1 atomic operation scb_broadcast(v) is
2 | 0y < sign(v);

3 | 04, < sign({v,oy));

4 | broadcast ECHO(v, 04,05,);

tackle case when INIT is lost

lre

eea—

Add QUORUM Message

8 when EcHO(v,0,,0,,);

9 is received do

10 if good(EcHo(v,0,,0,,)) A malreadyRevd(EcHO(v, 04, 04,)) then
11 o, <« sign({v,04));

12 broadcast ECHO(v, 0,0,);

13 if numRevd(EcHO(v, 0y, —)) > 3% then

14 | deliver(v);

\

when EcHO(v,0y,0,,) is received do

5

6 if good(EcHO(v,0,,0,,)) A —received(ECHO(v, 0y, 0,,)) then
7 if —alreadySent(EcHO(v, 0, —)) then
8

9

aﬁ,v — sign({v, 0y));

broadcast EcHO(v, 0y, 07,);

10 if numRevd(EcHO(v, 0y, —)) > 24 then
11 quorum, <— received ECHO's;
12 | broadcast QUORUM (v, 0,,, quorum,);

Add QUORUM Message

8 when EcHO(v,0..0,, };
9 is received do
10 if good(EcHO(v,0y,0,,)) A —alreadyRevd(EcHO(v, 0. 04,)) then
1 a, + sign((v,0,));
12 broadcast ECHO(v, 7,07, _}:
if numRevd(EcHO(v, 0, =) = "}* then
deliver(v):

5 when EcHO(v,0,,0,,) is received do
6 if good(EcHO(v,0,,0,,)) A —received(ECHO(v, 0,0,,)) then
7 if —alreadySent(EcHO(v, 0,, —)) then
8 0:71, < sign({v, 0v));
9 broadcast EcHO(v, 0, 0,);
10 if numRevd(EcHO(v, 0y, —)) > 25t then
11 quorum; < received ECHO's;
12 broadcast QUORUM (v, g, quorum,);

13 when QUORUM((v, 0y, quorum;) is received do

14 | if good(QUORUM(v, 0y, quorum;)) then

15 recordReceivedEchos(QUORUM(v, o, quorum,));

16 if numRevd(EcHO(v, 0, —)) > ™% A —delivered then
17 broadcast QUORUM(v, 0, quorum,);

18 delivered <— TRUE;

19 deliver(v);

Signhature-Free SCB?

i

WORK IN PROGRESS

We’re working hard forYfﬂ _
Science

(e

eea—

More Powerful Message Adversaries

* We considered receipt omissions

* How about altered messages?

lre

eea—

To Summarize
. Reliable Broadcast is Ipportant

* Novel model for silent churn

* Modeled by a message adversary

* Impossibility if n<3t+2d with

* Novel Signature-Based Protocol

* Working on Signature-Free Protocol

* Theory (of Distributed Algorithms) is Fun!

lre

eea—

