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Preface

La profusion des choses cachait la rareté des idées et ['usure des croyances.
[...] Retenir quelque chose du temps ot I’on ne sera plus.
In Les années (2008), Annie Ernaux

Nel mezzo del cammin di nostra vita

Mi ritrovai per una selva oscura,

Ché la diritta via era smarritta.

In La divina commedia (1307-1321), Dante Alighieri (1265-1321)

Wir miissen nichts sein, sondern alles werden wollen.
Johann Wolfgang von Goethe (1749-1832)

Chaque génération, sans doute, se croit vouée a refaire le monde.

La mienne sait pourtant qu’elle ne le refera pas. Mais sa tdche est peut-étre plus grande.
Elle consiste a empécher que le monde ne se défasse.

Speech at the Nobel Banquet, Stockholm, December 10, 1957, Albert Camus (1913-1960)

Rien n’est précaire comme vivre

Rien comme étre n’est passager

C’est un peu fondre pour le givre

Ou pour le vent étre léger

J’arrive ou je suis étranger.

In Le voyage de Hollande (1965), Louis Aragon (1897-1982)

What Is Distributed Computing? Distributed computing was born in the late
1970s when researchers and practitioners started taking into account the intrinsic
characteristic of physically distributed systems. The field then emerged as a special-
ized research area distinct from networking, operating systems, and parallel com-
puting.

Distributed computing arises when one has to solve a problem in terms of dis-
tributed entities (usually called processors, nodes, processes, actors, agents, sen-
sors, peers, etc.) such that each entity has only a partial knowledge of the many
parameters involved in the problem that has to be solved. While parallel computing
and real-time computing can be characterized, respectively, by the terms efficiency
and on-time computing, distributed computing can be characterized by the term un-
certainty. This uncertainty is created by asynchrony, multiplicity of control flows,
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absence of shared memory and global time, failure, dynamicity, mobility, etc. Mas-
tering one form or another of uncertainty is pervasive in all distributed computing
problems. A main difficulty in designing distributed algorithms comes from the fact
that each entity cooperating in the achievement of a common goal cannot have in-
stantaneous knowledge of the current state of the other entities; it can only know
their past local states.

Although distributed algorithms are often made up of a few lines, their behavior
can be difficult to understand and their properties hard to state and prove. Hence,
distributed computing is not only a fundamental topic but also a challenging topic
where simplicity, elegance, and beauty are first-class citizens.

Why This Book? While there are a lot of books on sequential computing (both on
basic data structures, or algorithms), this is not the case in distributed computing.
Most books on distributed computing consider advanced topics where the uncer-
tainty inherent to distributed computing is created by the net effect of asynchrony
and failures. It follows that these books are more appropriate for graduate students
than for undergraduate students.

The aim of this book is to present in a comprehensive way basic notions, concepts
and algorithms of distributed computing when the distributed entities cooperate by
sending and receiving messages on top of an underlying network. In this case, the
main difficulty comes from the physical distribution of the entities and the asyn-
chrony of the environment in which they evolve.

Audience This book has been written primarily for people who are not familiar
with the topic and the concepts that are presented. These include mainly:

e Senior-level undergraduate students and graduate students in computer science
or computer engineering, who are interested in the principles and foundations of
distributed computing.

e Practitioners and engineers who want to be aware of the state-of-the-art concepts,
basic principles, mechanisms, and techniques encountered in distributed comput-
ing.

Prerequisites for this book include undergraduate courses on algorithms, and ba-
sic knowledge on operating systems. Selections of chapters for undergraduate and
graduate courses are suggested in the section titled “How to Use This Book™ in the
Afterword.

Content As already indicated, this book covers algorithms, basic principles, and
foundations of message-passing programming, i.e., programs where the entities
communicate by sending and receiving messages through a network. The world is
distributed, and the algorithmic thinking suited to distributed applications and sys-
tems is not reducible to sequential computing. Knowledge of the bases of distributed
computing is becoming more important than ever as more and more computer ap-
plications are now distributed. The book is composed of six parts.
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e The aim of the first part, which is made up of six chapters, is to give a feel for the
nature of distributed algorithms, i.e., what makes them different from sequential
or parallel algorithms. To that end, it mainly considers distributed graph algo-
rithms. In this context, each node of the graph is a process, which has to compute
a result whose meaning depends on the whole graph.

Basic distributed algorithms such as network traversals, shortest-path algo-
rithms, vertex coloring, knot detection, etc., are first presented. Then, a general
framework for distributed graph algorithms is introduced. A chapter is devoted to
leader election algorithms on a ring network, and another chapter focuses on the
navigation of a network by mobile objects.

e The second part is on the nature of distributed executions. It is made up of four
chapters. In some sense, this part is the core of the book. It explains what a dis-
tributed execution is, the fundamental notion of a consistent global state, and the
impossibility—without freezing the computation—of knowing whether a com-
puted consistent global state has been passed through by the execution or not.

Then, this part of the book addresses an important issue of distributed compu-
tations, namely the notion of logical time: scalar (linear) time, vector time, and
matrix time. Each type of time is analyzed and examples of their uses are given.
A chapter, which extends the notion of a global state, is then devoted to asyn-
chronous distributed checkpointing. Finally, the last chapter of this part shows
how to simulate a synchronous system on top of an asynchronous system (such
simulators are called synchronizers).

e The third part of the book is made up of two chapters devoted to distributed
mutual exclusion and distributed resource allocation. Different families of
permission-based mutual exclusion algorithms are presented. The notion of an
adaptive algorithm is also introduced. The notion of a critical section with mul-
tiple entries, and the case of resources with a single or several instances is also
presented. Associated deadlock prevention techniques are introduced.

e The fourth part of the book is on the definition and the implementation of commu-
nication operations whose abstraction level is higher than the simple send/receive
of messages. These communication abstractions impose order constraints on mes-
sage deliveries. Causal message delivery and total order broadcast are first pre-
sented in one chapter. Then, another chapter considers synchronous communica-
tion (also called rendezvous or logically instantaneous communication).

e The fifth part of the book, which is made up of two chapters, is on the detection
of stable properties encountered in distributed computing. A stable property is a
property that, once true, remains true forever. The properties which are studied are
the detection of the termination of a distributed computation, and the detection of
distributed deadlock. This part of the book is strongly related to the second part
(which is devoted to the notion of a global state).

e The sixth and last part of the book, which is also made up of two chapters, is
devoted to the notion of a distributed shared memory. The aim is here to pro-
vide the entities (processes) with a set of objects that allow them to cooperate at
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an abstraction level more appropriate than the use of messages. Two consistency
conditions, which can be associated with these objects, are presented and inves-
tigated, namely, atomicity (also called linearizability) and sequential consistency.
Several algorithms implementing these consistency conditions are described.

To have a more complete feeling of the spirit of this book, the reader is invited
to consult the section “The Aim of This Book” in the Afterword, which describes
what it is hoped has been learned from this book. Each chapter starts with a short
presentation and a list of the main keywords, and terminates with a summary of its
content. Each of the six parts of the book is also introduced by a brief description of
its aim and its technical content.
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Afterword

The Aim of This Book

The practice of sequential computing has greatly benefited from the results of the
theory of sequential computing that were captured in the study of formal languages
and automata theory. Everyone knows what can be computed (computability) and
what can be computed efficiently (complexity). All these results constitute the foun-
dations of sequential computing, which, thanks to them, has become a science.
These theoretical results and algorithmic principles have been described in many
books from which students can learn basic results, algorithms, and principles of se-
quential computing (e.g., [99, 107, 148, 189, 205, 219, 258, 270, 351] to cite a few).

Since Lamport’s seminal paper “Time, clocks, and the ordering of events in a dis-
tributed system”, which appeared in 1978 [226], distributed computing is no longer
a set of tricks or recipes, but a domain of computing science with its own concepts,
methods, and applications. The world is distributed, and today the major part of ap-
plications are distributed. This means that message-passing algorithms are now an
important part of any computing science or computing engineering curriculum.

Thanks to appropriate curricula—and good associated books—students have a
good background in the theory and practice of sequential computing. In the same
spirit, an aim of this book is to try to provide them with an appropriate background
when they have to solve distributed computing problems.

Technology is what makes everyday life easier. Science is what allows us to
transcend it, and capture the deep nature of the objects we are manipulating. To that
end, it provides us with the right concepts to master and understand what we are
doing. Considering failure-free asynchronous distributed computing, an ambition of
this book is to be a step in this direction.

M. Raynal, Distributed Algorithms for Message-Passing Systems, 471
DOI 10.1007/978-3-642-38123-2, © Springer-Verlag Berlin Heidelberg 2013
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Most Important Concepts, Notions,
and Mechanisms Presented in This Book

Chapter 1: Asynchronous/synchronous system, breadth-first traversal, broadcast,
convergecast, depth-first traversal, distributed algorithm, forward/discard princi-
ple, initial knowledge, local algorithm, parallel traversal, spanning tree, unidirec-
tional logical ring.

Chapter 2: Distributed graph algorithm, cycle detection, graph coloring, knot de-
tection, maximal independent set, problem reduction, shortest path computation.

Chapter 3: Cut vertex, de Bruijn’s graph, determination of cut vertices, global func-
tion, message filtering, regular communication graph, round-based framework.

Chapter 4: Anonymous network, election, message complexity, process identity,
ring network, time complexity, unidirectional versus bidirectional ring.

Chapter 5: Adaptive algorithm, distributed queuing, edge/link reversal, mobile ob-
ject, mutual exclusion, network navigation, object consistency, routing, scalability,
spanning tree, starvation-freedom, token.

Chapter 6: Event, causal dependence relation, causal future, causal path, causal
past, concurrent (independent) events, causal precedence relation, consistent global
state, cut, global state, happened before relation, lattice of global states, observa-
tion, marker message, nondeterminism, partial order on events, partial order on
local states, process history, process local state, sequential observation.

Chapter 7: Adaptive communication layer, approximate causality relation, causal
precedence, causality tracking, conjunction of stable local predicates, detection of
a global state property, discarding old data, Hasse diagram, immediate predecessor,
linear (scalar) time (clock), logical time, matrix time (clock), message stability,
partial (total) order, relevant event, k-restricted vector clock, sequential observa-
tion, size of a vector clock, timestamp, time propagation, total order broadcast,
vector time (clock).

Chapter 8: Causal path, causal precedence, communication-induced checkpointing,
interval (of events), local checkpoint, forced local checkpoint, global checkpoint,
hidden dependency, recovery, rollback-dependency trackability, scalar clock, spon-
taneous local checkpoint, uncoordinated checkpoint, useless checkpoint, vector
clock, Z-dependence, zigzag cycle, zigzag pattern, zigzag path, zigzag prevention.

Chapter 9: Asynchronous system, bounded delay network, complexity, graph cov-
ering structure, physical clock drift, pulse-based programming, synchronizer, syn-
chronous algorithm.

Chapter 10: Adaptive algorithm, arbiter permission, bounded algorithm, deadlock-
freedom, directed acyclic graph, extended mutex, adaptive algorithm, grid quorum,
individual permission, liveness property, mutual exclusion (mutex), preemption,
quorum, readers/writers problem, safety property, starvation-freedom, timestamp,
vote.
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Chapter 11: Conflict graph, deadlock prevention, graph coloring, incremental re-
quests, k-out-of-M problem, permission, resource allocation, resource graph, re-
source type, resource instance, simultaneous requests, static/dynamic (resource)
session, timestamp, total order, waiting chain, wait-for graph.

Chapter 12: Asynchronous system, bounded lifetime message, causal barrier,
causal broadcast, causal message delivery order, circulating token, client/server
broadcast, coordinator process, delivery condition, first in first out (FIFO) channel,
order properties on a channel, size of control information, synchronous system.

Chapter 13: Asynchronous system, client-server hierarchy, communication initia-
tive, communicating sequential processes, crown, deadline-constrained interac-
tion, deterministic vs. nondeterministic context, logically instantaneous commu-
nication, planned vs. forced interaction, rendezvous, multiparty interaction, syn-
chronous communication, synchronous system, token.

Chapter 14: AND receive, asynchronous system, atomic model, counting, diffusing
computation, distributed iteration, global state, k-out-of-n receive statement, loop
invariant, message arrival vs. message reception, network traversal, nondetermin-
istic statement, OR receive statement, reasoned construction, receive statement,
ring, spanning tree, stable property, termination detection, wave.

Chapter 15: AND communication model, cycle, deadlock, deadlock detection,
knot, one-at-a-time model, OR communication model, probe-based algorithm, re-
source vs. message, stable property, wait-for graph.

Chapter 16: Atomicity, composability, concurrent object, consistency condition,
distributed shared memory, invalidation vs. update, linearizability, linearization
point, local property, manager process, object operation, partial order on opera-
tions, read/write register, real time, sequential specification, server process, shared
memory abstraction, total order broadcast abstraction.

Chapter 17: Causal consistency, concurrent object, consistency condition, dis-
tributed shared memory, invalidation, logical time, manager process, OO con-
straint, partial order on operations, read/write register, sequential consistency,
server processes, shared memory abstraction, total order broadcast abstraction,
WW constraint.

How to Use This Book

This section presents two courses on distributed computing which can benefit from
the concepts, algorithms and principles presented in this book. Each course is a
one-semester course, and they are designed to be sequential (a full year at the un-
dergraduate level, or split, with the first course at the undergraduate level and the
second at the beginning of the graduate level).

e A first one-semester course on distributed computing could first focus on Part I,
which is devoted to graph algorithms. Then, the course could address (a) dis-
tributed mutual exclusion (Chap. 10), (b) causal message delivery and total order
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broadcast (Chap. 12), and (c) distributed termination detection (Chap. 14), if time
permits.

The spirit of this course is to be an introductory course, giving students a cor-
rect intuition of what distributed algorithms are (they are not simple “extensions”
of sequential algorithms), and show them that there are problems which are spe-
cific to distributed computing.

e A second one-semester course on distributed computing could first address the
concept of a global state (Chap. 6). The aim is here to give the student a precise
view of what a distributed execution is and introduce the notion of a global state.
Then, the course could develop and illustrate the different notions of logical times
(Chap. 7).

Distributed checkpointing (Chap. 8), synchronizers (Chap. 9), resource alloca-
tion (Chap. 11), rendezvous communication (Chap. 13), and deadlock detection
(Chap. 15), can be used to illustrate the previous notions.

Finally, the meaning and the implementation of a distributed shared memory
(Part VI) could be presented to introduce the notion of a consistency condition,
which is a fundamental notion of distributed computing.

Of course, this book can also be used by engineers and researchers who work
on distributed applications to better understand the concepts and mechanisms that
underlie their work.

From Failure-Free Systems to Failure-Prone Systems

This book was devoted to algorithms for failure-free asynchronous distributed ap-
plications and systems. Once the fundamental notions, concepts, and algorithms
of failure-free distributed computing are mastered, one can focus on more spe-
cific topics of failure-prone distributed systems. In such a context, the com-
bined effect of asynchrony and failures create uncertainty that algorithms have
to cope with. The reader interested in the net effect of asynchrony and failure
on the design of distributed algorithms is invited to consult the following books:
[24, 67, 150, 155, 219, 242, 315, 316] (to cite a few).

A Series of Books

This book completes a series of four books, written by the author, devoted to concur-
rent and distributed computing [315-317]. More precisely, we have the following.

e As has been seen, this book is on elementary distributed computing for failure-
free asynchronous systems.

e The book [317] is on algorithms in asynchronous shared memory systems where
processes can commit crash failures. It focuses on the construction of reliable
concurrent objects in the presence of process crashes.
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e The book [316] is on asynchronous message-passing systems where processes are
prone to crash failures. It presents communication and agreement abstractions
for fault-tolerant asynchronous distributed systems. Failure detectors are used to
circumvent impossibility results encountered in pure asynchronous systems.

e The book [315] is on synchronous message-passing systems, where the processes
are prone to crash failures, omission failures, or Byzantine failures. It focuses on
the following distributed agreement problems: consensus, interactive consistency,
and non-blocking atomic commit.

Enseigner, c’est réfléchir a voix haute devant les étudiants.
Henri-Léon Lebesgue (1875-1941)

Make everything as simple as possible, but not simpler.
Albert Einstein (1879-1955)



