Michel Raynal

Distributed
Algorithms for
Message-Passing
Systems

@ Springer

Distributed Algorithms
for Message-Passing Systems

Michel Raynal

Distributed Algorithms
for Message-Passing Systems

@ Springer

Michel Raynal

Institut Universitaire de France
IRISA-ISTIC

Université de Rennes 1

Rennes Cedex

France

ISBN 978-3-642-38122-5 ISBN 978-3-642-38123-2 (eBook)
DOI 10.1007/978-3-642-38123-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013942973
ACM Computing Classification (1998): F.1, D.1, B.3

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

La profusion des choses cachait la rareté des idées et ['usure des croyances.
[...] Retenir quelque chose du temps ot I’on ne sera plus.
In Les années (2008), Annie Ernaux

Nel mezzo del cammin di nostra vita

Mi ritrovai per una selva oscura,

Ché la diritta via era smarritta.

In La divina commedia (1307-1321), Dante Alighieri (1265-1321)

Wir miissen nichts sein, sondern alles werden wollen.
Johann Wolfgang von Goethe (1749-1832)

Chaque génération, sans doute, se croit vouée a refaire le monde.

La mienne sait pourtant qu’elle ne le refera pas. Mais sa tdche est peut-étre plus grande.
Elle consiste a empécher que le monde ne se défasse.

Speech at the Nobel Banquet, Stockholm, December 10, 1957, Albert Camus (1913-1960)

Rien n’est précaire comme vivre

Rien comme étre n’est passager

C’est un peu fondre pour le givre

Ou pour le vent étre léger

J’arrive ou je suis étranger.

In Le voyage de Hollande (1965), Louis Aragon (1897-1982)

What Is Distributed Computing? Distributed computing was born in the late
1970s when researchers and practitioners started taking into account the intrinsic
characteristic of physically distributed systems. The field then emerged as a special-
ized research area distinct from networking, operating systems, and parallel com-
puting.

Distributed computing arises when one has to solve a problem in terms of dis-
tributed entities (usually called processors, nodes, processes, actors, agents, sen-
sors, peers, etc.) such that each entity has only a partial knowledge of the many
parameters involved in the problem that has to be solved. While parallel computing
and real-time computing can be characterized, respectively, by the terms efficiency
and on-time computing, distributed computing can be characterized by the term un-
certainty. This uncertainty is created by asynchrony, multiplicity of control flows,

vi Preface

absence of shared memory and global time, failure, dynamicity, mobility, etc. Mas-
tering one form or another of uncertainty is pervasive in all distributed computing
problems. A main difficulty in designing distributed algorithms comes from the fact
that each entity cooperating in the achievement of a common goal cannot have in-
stantaneous knowledge of the current state of the other entities; it can only know
their past local states.

Although distributed algorithms are often made up of a few lines, their behavior
can be difficult to understand and their properties hard to state and prove. Hence,
distributed computing is not only a fundamental topic but also a challenging topic
where simplicity, elegance, and beauty are first-class citizens.

Why This Book? While there are a lot of books on sequential computing (both on
basic data structures, or algorithms), this is not the case in distributed computing.
Most books on distributed computing consider advanced topics where the uncer-
tainty inherent to distributed computing is created by the net effect of asynchrony
and failures. It follows that these books are more appropriate for graduate students
than for undergraduate students.

The aim of this book is to present in a comprehensive way basic notions, concepts
and algorithms of distributed computing when the distributed entities cooperate by
sending and receiving messages on top of an underlying network. In this case, the
main difficulty comes from the physical distribution of the entities and the asyn-
chrony of the environment in which they evolve.

Audience This book has been written primarily for people who are not familiar
with the topic and the concepts that are presented. These include mainly:

e Senior-level undergraduate students and graduate students in computer science
or computer engineering, who are interested in the principles and foundations of
distributed computing.

e Practitioners and engineers who want to be aware of the state-of-the-art concepts,
basic principles, mechanisms, and techniques encountered in distributed comput-
ing.

Prerequisites for this book include undergraduate courses on algorithms, and ba-
sic knowledge on operating systems. Selections of chapters for undergraduate and
graduate courses are suggested in the section titled “How to Use This Book™ in the
Afterword.

Content As already indicated, this book covers algorithms, basic principles, and
foundations of message-passing programming, i.e., programs where the entities
communicate by sending and receiving messages through a network. The world is
distributed, and the algorithmic thinking suited to distributed applications and sys-
tems is not reducible to sequential computing. Knowledge of the bases of distributed
computing is becoming more important than ever as more and more computer ap-
plications are now distributed. The book is composed of six parts.

Preface vii

e The aim of the first part, which is made up of six chapters, is to give a feel for the
nature of distributed algorithms, i.e., what makes them different from sequential
or parallel algorithms. To that end, it mainly considers distributed graph algo-
rithms. In this context, each node of the graph is a process, which has to compute
a result whose meaning depends on the whole graph.

Basic distributed algorithms such as network traversals, shortest-path algo-
rithms, vertex coloring, knot detection, etc., are first presented. Then, a general
framework for distributed graph algorithms is introduced. A chapter is devoted to
leader election algorithms on a ring network, and another chapter focuses on the
navigation of a network by mobile objects.

e The second part is on the nature of distributed executions. It is made up of four
chapters. In some sense, this part is the core of the book. It explains what a dis-
tributed execution is, the fundamental notion of a consistent global state, and the
impossibility—without freezing the computation—of knowing whether a com-
puted consistent global state has been passed through by the execution or not.

Then, this part of the book addresses an important issue of distributed compu-
tations, namely the notion of logical time: scalar (linear) time, vector time, and
matrix time. Each type of time is analyzed and examples of their uses are given.
A chapter, which extends the notion of a global state, is then devoted to asyn-
chronous distributed checkpointing. Finally, the last chapter of this part shows
how to simulate a synchronous system on top of an asynchronous system (such
simulators are called synchronizers).

e The third part of the book is made up of two chapters devoted to distributed
mutual exclusion and distributed resource allocation. Different families of
permission-based mutual exclusion algorithms are presented. The notion of an
adaptive algorithm is also introduced. The notion of a critical section with mul-
tiple entries, and the case of resources with a single or several instances is also
presented. Associated deadlock prevention techniques are introduced.

e The fourth part of the book is on the definition and the implementation of commu-
nication operations whose abstraction level is higher than the simple send/receive
of messages. These communication abstractions impose order constraints on mes-
sage deliveries. Causal message delivery and total order broadcast are first pre-
sented in one chapter. Then, another chapter considers synchronous communica-
tion (also called rendezvous or logically instantaneous communication).

e The fifth part of the book, which is made up of two chapters, is on the detection
of stable properties encountered in distributed computing. A stable property is a
property that, once true, remains true forever. The properties which are studied are
the detection of the termination of a distributed computation, and the detection of
distributed deadlock. This part of the book is strongly related to the second part
(which is devoted to the notion of a global state).

e The sixth and last part of the book, which is also made up of two chapters, is
devoted to the notion of a distributed shared memory. The aim is here to pro-
vide the entities (processes) with a set of objects that allow them to cooperate at

Viil Preface

an abstraction level more appropriate than the use of messages. Two consistency
conditions, which can be associated with these objects, are presented and inves-
tigated, namely, atomicity (also called linearizability) and sequential consistency.
Several algorithms implementing these consistency conditions are described.

To have a more complete feeling of the spirit of this book, the reader is invited
to consult the section “The Aim of This Book” in the Afterword, which describes
what it is hoped has been learned from this book. Each chapter starts with a short
presentation and a list of the main keywords, and terminates with a summary of its
content. Each of the six parts of the book is also introduced by a brief description of
its aim and its technical content.

Acknowledgments This book originates from lecture notes for undergraduate and graduate
courses on distributed computing that I give at the University of Rennes (France) and, as an
invited professor, at several universities all over the world. I would like to thank the students
for their questions that, in one way or another, have contributed to this book. I want also to
thank Ronan Nugent (Springer) for his support and his help in putting it all together.

Last but not least (and maybe most importantly), I also want to thank all the researchers
whose results are presented in this book. Without their work, this book would not exist.

Michel Raynal

Professeur des Universités

Institut Universitaire de France
IRISA-ISTIC, Université de Rennes 1
Campus de Beaulieu, 35042, Rennes, France

March—October 2012

Rennes, Saint-Grégoire, Tokyo, Fukuoka (AINA’12), Arequipa (LATIN’12),
Reykjavik (SIROCCO’12), Palermo (CISIS’12), Madeira (PODC’12), Lisbon,
Douelle, Saint-Philibert, Rhodes Island (Europar’12),

Salvador de Bahia (DISC’12), Mexico City (Turing Year at UNAM)

Contents

Part1

1

Distributed Graph Algorithms

Basic Definitions and Network Traversal Algorithms

1.1

1.2

1.3

1.4

1.5
1.6
1.7

Distributed Algorithms
1.1.1 Definition
1.1.2 An Introductory Example:

Learning the Communication Graph
Parallel Traversal: Broadcast and Convergecast
1.2.1 Broadcast and Convergecast
1.2.2 A Flooding Algorithm
1.2.3 Broadcast/Convergecast Based on a Rooted Spanning Tree
1.2.4 Building a Spanning Tree
Breadth-First Spanning Tree
1.3.1 Breadth-First Spanning Tree

Built Without Centralized Control
1.3.2 Breadth-First Spanning Tree Built with Centralized Control
Depth-First Traversal
1.4.1 A Simple Algorithm
1.4.2 Application: Construction of a Logical Ring
Summary
Bibliographic Notes,
Exercises and Problems00

Distributed Graph Algorithms

2.1

2.2

Distributed Shortest Path Algorithms
2.1.1 A Distributed Adaptation

of Bellman—Ford’s Shortest Path Algorithm
2.1.2 A Distributed Adaptation

of Floyd—Warshall’s Shortest Paths Algorithm
Vertex Coloring and Maximal Independent Set
2.2.1 On Sequential Vertex Coloring

iX

Contents

2.2.2 Distributed (A + 1)-Coloring of Processes

2.2.3 Computing a Maximal Independent Set

2.3 Knotand Cycle Detection

2.3.1 Directed Graph, Knot,and Cycle
2.3.2 Communication Graph, Logical Directed Graph,

and Reachability

2.3.3 Specification of the Knot Detection Problem

2.3.4 Principle of the Knot/Cycle Detection Algorithm

2.3.5 Local Variables

2.3.6 BehaviorofaProcess

24 Summary oL e e e e

2.5 BibliographicNotes

2.6 Exercisesand Problems

An Algorithmic Framework
to Compute Global Functions on a Process Graph
3.1 Distributed Computation of Global Functions
3.1.1 Type of Global Functions
3.1.2 Constraints on the Computation
3.2 An Algorithmic Framework
3.2.1 A Round-Based Framework
3.2.2 When the Diameter Is Not Known
3.3 Distributed Determination of Cut Vertices
33.1 CutVertices
3.3.2 An Algorithm Determining Cut Vertices
3.4 Improving the Framework
341 TwoTypesofFiltering.
3.4.2 AnImproved Algorithm
3.5 The Case of Regular Communication Graphs
3.5.1 Tradeoff Between Graph Topology and Number of Rounds
352 DeBruijjnGraphs L oL
3.6 Summary e e
3.7 BibliographicNotes, .
38 Problem

Leader Election Algorithms
4.1 The Leader Election Problem
4.1.1 Problem Definition.
4.1.2 Anonymous Systems: An Impossibility Result
4.1.3 Basic Assumptions and Principles
of the Election Algorithms
4.2 A Simple O (n?) Leader Election Algorithm
for Unidirectional Rings
4.2.1 Contextand Principle
422 The Algorithm,
4.2.3 Time Cost of the Algorithm

Contents

4.3

4.4

4.5
4.6
4.7
4.8

4.2.4 Message Cost of the Algorithm
425 ASimple Variant. Lo
An O(nlogn) Leader Election Algorithm for Bidirectional Rings .
4.3.1 Contextand Principle
43.2 The Algorithmo L.
4.3.3 Time and Message Complexities
An O(nlogn) Election Algorithm for Unidirectional Rings
4.4.1 Contextand Principles
442 TheAlgorithm
4.4.3 Discussion: Message Complexity and FIFO Channels . . .
Two Particular Cases
Summary e e e
BibliographicNotes
Exercises and Problems00

5 Mobile Objects Navigating a Network

5.1

5.2

5.3

54

55
5.6
5.7

Part I1

Mobile Object in a Process Graph
5.1.1 Problem Definition.
5.1.2 Mobile Object Versus Mutual Exclusion
5.1.3 A Centralized (Home-Based) Algorithm
5.1.4 The Algorithms Presented in This Chapter
A Navigation Algorithm for a Complete Network
5.2.1 Underlying Principles
52.2 The Algorithm
A Navigation Algorithm Based on a Spanning Tree
5.3.1 Principles of the Algorithm:

Tree Invariant and Proxy Behavior
5.3.2 The Algorithmo
5.3.3 Discussion and Properties L.
5.3.4 Proof of the Algorithm
An Adaptive Navigation Algorithm
5.4.1 The Adaptivity Property
5.4.2 Principle of the Implementation
5.4.3 An Adaptive Algorithm Based on a Distributed Queue . . .
544 Properties
5.4.5 Example of an Execution
Summary e
Bibliographic Notes
Exercises and Problems

Logical Time and Global States in Distributed Systems

6 Nature of Distributed Computations
and the Concept of a Global State

6.1

A Distributed Execution Is a Partial Order on Local Events
6.1.1 BasicDefinitions

X1

121

. 122

Xii

Contents

6.1.2 A Distributed Execution Is a Partial Order on Local Events
6.1.3 Causal Past, Causal Future, Concurrency, Cut
6.1.4 Asynchronous Distributed Execution
with Respect to Physical Time
6.2 A Distributed Execution Is a Partial Order on Local States
6.3 Global State and Lattice of Global States
6.3.1 The ConceptofaGlobal State
6.3.2 Lattice of Global States
6.3.3 Sequential Observations
6.4 Global States Including Process States and Channel States
6.4.1 Global State Including Channel States
6.4.2 Consistent Global State Including Channel States
6.4.3 Consistent Global State Versus Consistent Cut
6.5 On-the-Fly Computation of Global States
6.5.1 Global State Computation Is an Observation Problem
6.5.2 Problem Definition. L.
6.5.3 On the Meaning of the Computed Global State
6.5.4 Principles of Algorithms Computing a Global State ..
6.6 A Global State Algorithm Suited to FIFO Channels
6.6.1 Principle of the Algorithm
6.6.2 The Algorithm
6.6.3 Example of an Execution
6.7 A Global State Algorithm Suited to Non-FIFO Channels
6.7.1 The Algorithm and Its Principles
6.7.2 How to Compute the State of the Channels
6.8 Summary
6.9 BibliographicNotes 0oL,
6.10 Exercises and Problems

Logical Time in Asynchronous Distributed Systems
7.1 LinearTime,
7.1.1 Scalar (or Linear) Time
7.1.2 From Partial Order to Total Order:
The Notion of a Timestamp
7.1.3 Relating Logical Time and Timestamps with Observations .
7.1.4 Timestamps in Action: Total Order Broadcast
7.2 VectorTime
7.2.1 Vector Time and Vector Clocks
7.2.2 Vector Clock Properties
7.2.3 On the Development of Vector Time
7.2.4 Relating Vector Time and Global States
7.2.5 Vector Clocks in Action:
On-the-Fly Determination of a Global State Property
7.2.6 Vector Clocks in Action:
On-the-Fly Determination of the Immediate Predecessors .
7.3 Onthe Size of Vector Clocks

122

Contents

7.3.1 A Lower Bound on the Size of Vector Clocks
7.3.2 An Efficient Implementation of Vector Clocks
7.3.3 k-Restricted VectorClock
74 MatrixTime oo
7.4.1 Matrix Clock: Definition and Algorithm
7.4.2 A Variant of Matrix Time in Action: Discard Old Data . . .
7.5 Summary e
7.6 Bibliographic Notes
7.7 Exercises and Problems

8 Asynchronous Distributed Checkpointing
8.1 Definitions and Main Theorem
8.1.1 Local and Global Checkpoints
8.1.2 Z-Dependency, Zigzag Paths, and Z-Cycles
8.1.3 The Main Theorem
8.2 Consistent Checkpointing Abstractions
8.2.1 Z-Cycle-Freedom
8.2.2 Rollback-Dependency Trackability
8.2.3 On Distributed Checkpointing Algorithms
8.3 Checkpointing Algorithms Ensuring Z-Cycle Prevention
8.3.1 An Operational Characterization of Z-Cycle-Freedom . . .
8.3.2 A Property of a Particular Dating System
8.3.3 Two Simple Algorithms Ensuring Z-Cycle Prevention . . .
8.3.4 On the Notion of an Optimal Algorithm
for Z-Cycle Prevention
8.4 Checkpointing Algorithms
Ensuring Rollback-Dependency Trackability
8.4.1 Rollback-Dependency Trackability (RDT)
8.4.2 A Simple Brute Force RDT Checkpointing Algorithm . . .
8.4.3 The Fixed Dependency After Send (FDAS)
RDT Checkpointing Algorithm
8.4.4 Still Reducing the Number of Forced Local Checkpoints . .
8.5 Message Logging for Uncoordinated Checkpointing
8.5.1 Uncoordinated Checkpointing
8.5.2 To Log or Not to Log Messages on Stable Storage
8.5.3 ARecovery Algorithm
8.54 AFewImprovements
8.6 Summary
8.7 BibliographicNotes
8.8 Exercisesand Problems

9 Simulating Synchrony on Top of Asynchronous Systems
9.1 Synchronous Systems, Asynchronous Systems, and Synchronizers

9.1.1 Synchronous Systems

9.1.2 Asynchronous Systems and Synchronizers

9.1.3 Onthe Efficiency Side

Xiii

174
176
181
182
182
184
186
186
187

189
189
189
190
192
196
196
197
198
199
199
199
201

203
203

203
205

X1V

9.2

9.3

9.4

9.5

9.6
9.7
9.8

Part II1

Contents

Basic Principle for a Synchronizer,
9.2.1 The Main Problemto Solve
9.2.2 Principle of the Solutions
Basic Synchronizers: o and 8
9.3.1 Synchronizero
9.3.2 Synchronizer B L.
Advanced Synchronizers: yand§o
9.4.1 Synchronizery
942 Synchronizerd L.
The Case of Networks with Bounded Delays
9.5.1 Contextand Hypotheses
9.52 TheProblemtoSolve
9.53 Synchronizer Ao
9.54 Synchronizer u oL L
9.5.5 When the Local Physical Clocks Drift
Summary e e
BibliographicNotes,
Exercises and Problems00

Mutual Exclusion and Resource Allocation

10 Permission-Based Mutual Exclusion Algorithms

10.1

10.2

10.3

10.4

10.5
10.6
10.7

The Mutual Exclusion Problem
10.1.1 Definition
10.1.2 Classes of Distributed Mutex Algorithms
A Simple Algorithm Based on Individual Permissions
10.2.1 Principle of the Algorithm
10.2.2 The Algorithm
10.2.3 Proof of the Algorithm
10.2.4 From Simple Mutex to Mutex on Classes of Operations . .
Adaptive Mutex Algorithms Based on Individual Permissions . . .
10.3.1 The Notion of an Adaptive Algorithm
10.3.2 A Timestamp-Based Adaptive Algorithm
10.3.3 A Bounded Adaptive Algorithm
10.3.4 Proof of the Bounded Adaptive Mutex Algorithm
An Algorithm Based on Arbiter Permissions
10.4.1 Permissions Managed by Arbiters
10.4.2 Permissions Versus Quorums
10.4.3 Quorum Construction
10.4.4 An Adaptive Mutex Algorithm

Based on Arbiter Permissions
Summary e e e
BibliographicNotes
Exercises and Problems

Contents

11 Distributed Resource Allocation
11.1 A Single Resource with Several Instances

11.2

11.3
11.4
11.5
11.6

11.1.1
11.1.2

11.1.3
11.1.4
11.1.5

The k-out-of-M Problem
Mutual Exclusion with Multiple Entries:

The 1-out-of-M Mutex Problem
An Algorithm for the k-out-of-M Mutex Problem
Proof of the Algorithm
From Mutex Algorithms to k-out-of-M Algorithms

Several Resources with a Single Instance

11.2.1
11.2.2

11.2.3

11.2.4

11.2.5

Several Resources with a Single Instance
Incremental Requests for Single Instance Resources:
UsingaTotal Order
Incremental Requests for Single Instance Resources:
Reducing Process Waiting Chains
Simultaneous Requests for Single Instance Resources

and Static Sessions
Simultaneous Requests for Single Instance Resources

and Dynamic Sessions

Several Resources with Multiple Instances
Summary
BibliographicNotes,
Exercises and Problems 0oL

Part IV High-Level Communication Abstractions

12 Order Constraints on Message Delivery
12.1 The Causal Message Delivery Abstraction

12.1.1
12.1.2

12.1.3

Definition of Causal Message Delivery
A Causality-Based Characterization

of Causal Message Delivery
Causal Order

with Respect to Other Message Ordering Constraints .

12.2 A Basic Algorithm for Point-to-Point Causal Message Dehvery ..

12.2.1
12.2.2
12.2.3

A Simple Algorithm
Proof of the Algorithm
Reduce the Size of Control Information

Carried by Messages

12.3 Causal Broadcast.

12.3.1
12.3.2
12.3.3

Definition and a Simple Algorithm
The Notion of a Causal Barrier
Causal Broadcast with Bounded Lifetime Messages

12.4 The Total Order Broadcast Abstraction

12.4.1
12.4.2

Strong Total Order Versus Weak Total Order
An Algorithm Based on a Coordinator Process
or a Circulating Token

XV

277
277
277

278
280
283

. 285

285
286

287

290

292

303
303
304

305

. 306

306
306
309

Xvi

13

Contents

12.4.3 An Inquiry-Based Algorithm
12.4.4 An Algorithm for Synchronous Systems
12.5 Playing with a Single Channel
12.5.1 Four Order Properties on a Channel
12.5.2 A General Algorithm Implementing These Properties
126 Summary oL
12.7 Bibliographic Notes
12.8 Exercises and Problems, ..

Rendezvous (Synchronous) Communication
13.1 The Synchronous Communication Abstraction
13.1.1 Definition
13.1.2 AnExampleofUse
13.1.3 A Message Pattern-Based Characterization
13.1.4 Types of Algorithms
Implementing Synchronous Communications
13.2 Algorithms for Nondeterministic Planned Interactions
13.2.1 Deterministic and Nondeterministic Communication
Contexts e
13.2.2 An Asymmetric (Static) Client—Server Implementation
13.2.3 An Asymmetric Token-Based Implementation
13.3 An Algorithm for Nondeterministic Forced Interactions
13.3.1 Nondeterministic Forced Interactions
13.3.2 A Simple Algorithm
13.3.3 Proof of the Algorithm
13.4 Rendezvous with Deadlines in Synchronous Systems
13.4.1 Synchronous Systems and Rendezvous with Deadline . . .
13.4.2 Rendezvous with Deadline Between Two Processes
13.4.3 Introducing Nondeterministic Choice
13.4.4 n-Way Rendezvous with Deadline
13.5 Summary
13.6 Bibliographic Notes
13.7 Exercises and Problems

Part V Detection of Properties on Distributed Executions

14

Distributed Termination Detection
14.1 The Distributed Termination Detection Problem
14.1.1 Process and Channel States
14.1.2 Termination Predicate
14.1.3 The Termination Detection Problem
14.1.4 Types and Structure of Termination Detection Algorithms .
14.2 Termination Detection in the Asynchronous Atomic Model .
14.2.1 The AtomicModel

Contents

15

XVvii
14.2.2 The Four-Counter Algorithm 371
14.2.3 The Counting Vector Algorithm 373
14.2.4 The Four-Counter Algorithm
vs. the Counting Vector Algorithm 376
14.3 Termination Detection in Diffusing Computations 376
14.3.1 The Notion of a Diffusing Computation 376
14.3.2 A Detection Algorithm Suited to Diffusing Computations . 377
14.4 A General Termination Detection Algorithm 378
14.4.1 Wave and Sequence of Waves 379
14.4.2 A Reasoned Construction 381
14.5 Termination Detection in a Very General Distributed Model 385
14.5.1 Model and Nondeterministic Atomic Receive Statement . . 385
14.5.2 The Predicate fulfilled() 387
14.5.3 Static vs. Dynamic Termination: Definition 388
14.5.4 Detection of Static Termination 390
14.5.5 Detection of Dynamic Termination 393
146 Summary 396
14.7 Bibliographic Notes 396
14.8 Exercises and Problems 397
Distributed Deadlock Detection 401
15.1 The Deadlock Detection Problem 401
15.1.1 Wait-For Graph (WFG) 401
15.1.2 AND and OR Models Associated with Deadlock 403
15.1.3 Deadlock in the AND Model 403
15.1.4 Deadlock inthe OR Model 404
15.1.5 The Deadlock Detection Problem 404
15.1.6 Structure of Deadlock Detection Algorithms 405
15.2 Deadlock Detection in the One-at-a-Time Model 405
15.2.1 Principle and Local Variables 406
15.2.2 A Detection Algorithm 406
15.2.3 Proof of the Algorithm 407
15.3 Deadlock Detection in the AND Communication Model 408
15.3.1 Model and Principle of the Algorithm 409
15.3.2 A Detection Algorithm 409
15.3.3 Proof of the Algorithm 411
15.4 Deadlock Detection in the OR Communication Model 413
154.1 Principleo 413
15.4.2 A Detection Algorithm 416
15.4.3 Proof of the Algorithm 419
15,5 Summary 421
15.6 Bibliographic Notes 421
15.7 Exercises and Problems 422

XViil

Contents

Part VI Distributed Shared Memory

16 Atomic Consistency (Linearizability) 427
16.1 The Concept of a Distributed Shared Memory 427
16.2 The Atomicity Consistency Condition. 429

16.2.1 WhatlIsthelIssue? 429
16.2.2 An Execution Is a Partial Order on Operations 429
16.2.3 Atomicity: Formal Definition 430
16.3 Atomic Objects Compose forFree 432
16.4 Message-Passing Implementations of Atomicity 435
16.4.1 Atomicity Based on
a Total Order Broadcast Abstraction 435
16.4.2 Atomicity of Read/Write Objects Based on
Server Processes Lo 437
16.4.3 Atomicity Based on
a Server Process and Copy Invalidation 438
16.4.4 Introducing the Notion of an Owner Process 439
16.4.5 Atomicity Based on a Server Process and Copy Update . . 443
16.5 Summary oL 444
16.6 Bibliographic Notes 444
16.7 Exercises and Problems 445

17 Sequential Consistency, 447

17.1 Sequential Consistency 447
17.1.1 Definition 447
17.1.2 Sequential Consistency Is Not a Local Property 449
17.1.3 Partial Order for Sequential Consistency 450
17.1.4 Two Theorems

for Sequentially Consistent Read/Write Registers 451
17.1.5 From Theorems to Algorithms 453

17.2 Sequential Consistency from Total Order Broadcast 453
17.2.1 A Fast Read Algorithm for Read/Write Objects 453
17.2.2 A Fast Write Algorithm for Read/Write Objects 455
17.2.3 A Fast Enqueue Algorithm for Queue Objects 456

17.3 Sequential Consistency from a Single Server 456
17.3.1 The Single Server [saProcess. 456
17.3.2 The Single Server Is a Navigating Token 459

17.4 Sequential Consistency with a Server per Object 460
17.4.1 Structural View 460
17.4.2 The Object Managers Must Cooperate 461
17.4.3 An Algorithm Based on the OO Constraint 462

17.5 A Weaker Consistency Condition: Causal Consistency 464
17.5.1 Definition L 464
17.5.2 A Simple Algorithm 466
17.5.3 The Case of a Single Object 467

17.6 A Hierarchy of Consistency Conditions 468

Contents XiX

177 Summaryo 468

17.8 Bibliographic Notes 469

17.9 Exercises and Problems 470

Afterword 471

The Aimof ThisBook 471
Most Important Concepts, Notions, and Mechanisms

Presented in This Book 471

HowtoUse ThisBook 473

From Failure-Free Systems to Failure-Prone Systems 474

A Seriesof Bookso 474

References 477

Afterword

The Aim of This Book

The practice of sequential computing has greatly benefited from the results of the
theory of sequential computing that were captured in the study of formal languages
and automata theory. Everyone knows what can be computed (computability) and
what can be computed efficiently (complexity). All these results constitute the foun-
dations of sequential computing, which, thanks to them, has become a science.
These theoretical results and algorithmic principles have been described in many
books from which students can learn basic results, algorithms, and principles of se-
quential computing (e.g., [99, 107, 148, 189, 205, 219, 258, 270, 351] to cite a few).

Since Lamport’s seminal paper “Time, clocks, and the ordering of events in a dis-
tributed system”, which appeared in 1978 [226], distributed computing is no longer
a set of tricks or recipes, but a domain of computing science with its own concepts,
methods, and applications. The world is distributed, and today the major part of ap-
plications are distributed. This means that message-passing algorithms are now an
important part of any computing science or computing engineering curriculum.

Thanks to appropriate curricula—and good associated books—students have a
good background in the theory and practice of sequential computing. In the same
spirit, an aim of this book is to try to provide them with an appropriate background
when they have to solve distributed computing problems.

Technology is what makes everyday life easier. Science is what allows us to
transcend it, and capture the deep nature of the objects we are manipulating. To that
end, it provides us with the right concepts to master and understand what we are
doing. Considering failure-free asynchronous distributed computing, an ambition of
this book is to be a step in this direction.

M. Raynal, Distributed Algorithms for Message-Passing Systems, 471
DOI 10.1007/978-3-642-38123-2, © Springer-Verlag Berlin Heidelberg 2013

472 Afterword

Most Important Concepts, Notions,
and Mechanisms Presented in This Book

Chapter 1: Asynchronous/synchronous system, breadth-first traversal, broadcast,
convergecast, depth-first traversal, distributed algorithm, forward/discard princi-
ple, initial knowledge, local algorithm, parallel traversal, spanning tree, unidirec-
tional logical ring.

Chapter 2: Distributed graph algorithm, cycle detection, graph coloring, knot de-
tection, maximal independent set, problem reduction, shortest path computation.

Chapter 3: Cut vertex, de Bruijn’s graph, determination of cut vertices, global func-
tion, message filtering, regular communication graph, round-based framework.

Chapter 4: Anonymous network, election, message complexity, process identity,
ring network, time complexity, unidirectional versus bidirectional ring.

Chapter 5: Adaptive algorithm, distributed queuing, edge/link reversal, mobile ob-
ject, mutual exclusion, network navigation, object consistency, routing, scalability,
spanning tree, starvation-freedom, token.

Chapter 6: Event, causal dependence relation, causal future, causal path, causal
past, concurrent (independent) events, causal precedence relation, consistent global
state, cut, global state, happened before relation, lattice of global states, observa-
tion, marker message, nondeterminism, partial order on events, partial order on
local states, process history, process local state, sequential observation.

Chapter 7: Adaptive communication layer, approximate causality relation, causal
precedence, causality tracking, conjunction of stable local predicates, detection of
a global state property, discarding old data, Hasse diagram, immediate predecessor,
linear (scalar) time (clock), logical time, matrix time (clock), message stability,
partial (total) order, relevant event, k-restricted vector clock, sequential observa-
tion, size of a vector clock, timestamp, time propagation, total order broadcast,
vector time (clock).

Chapter 8: Causal path, causal precedence, communication-induced checkpointing,
interval (of events), local checkpoint, forced local checkpoint, global checkpoint,
hidden dependency, recovery, rollback-dependency trackability, scalar clock, spon-
taneous local checkpoint, uncoordinated checkpoint, useless checkpoint, vector
clock, Z-dependence, zigzag cycle, zigzag pattern, zigzag path, zigzag prevention.

Chapter 9: Asynchronous system, bounded delay network, complexity, graph cov-
ering structure, physical clock drift, pulse-based programming, synchronizer, syn-
chronous algorithm.

Chapter 10: Adaptive algorithm, arbiter permission, bounded algorithm, deadlock-
freedom, directed acyclic graph, extended mutex, adaptive algorithm, grid quorum,
individual permission, liveness property, mutual exclusion (mutex), preemption,
quorum, readers/writers problem, safety property, starvation-freedom, timestamp,
vote.

How to Use This Book 473

Chapter 11: Conflict graph, deadlock prevention, graph coloring, incremental re-
quests, k-out-of-M problem, permission, resource allocation, resource graph, re-
source type, resource instance, simultaneous requests, static/dynamic (resource)
session, timestamp, total order, waiting chain, wait-for graph.

Chapter 12: Asynchronous system, bounded lifetime message, causal barrier,
causal broadcast, causal message delivery order, circulating token, client/server
broadcast, coordinator process, delivery condition, first in first out (FIFO) channel,
order properties on a channel, size of control information, synchronous system.

Chapter 13: Asynchronous system, client-server hierarchy, communication initia-
tive, communicating sequential processes, crown, deadline-constrained interac-
tion, deterministic vs. nondeterministic context, logically instantaneous commu-
nication, planned vs. forced interaction, rendezvous, multiparty interaction, syn-
chronous communication, synchronous system, token.

Chapter 14: AND receive, asynchronous system, atomic model, counting, diffusing
computation, distributed iteration, global state, k-out-of-n receive statement, loop
invariant, message arrival vs. message reception, network traversal, nondetermin-
istic statement, OR receive statement, reasoned construction, receive statement,
ring, spanning tree, stable property, termination detection, wave.

Chapter 15: AND communication model, cycle, deadlock, deadlock detection,
knot, one-at-a-time model, OR communication model, probe-based algorithm, re-
source vs. message, stable property, wait-for graph.

Chapter 16: Atomicity, composability, concurrent object, consistency condition,
distributed shared memory, invalidation vs. update, linearizability, linearization
point, local property, manager process, object operation, partial order on opera-
tions, read/write register, real time, sequential specification, server process, shared
memory abstraction, total order broadcast abstraction.

Chapter 17: Causal consistency, concurrent object, consistency condition, dis-
tributed shared memory, invalidation, logical time, manager process, OO con-
straint, partial order on operations, read/write register, sequential consistency,
server processes, shared memory abstraction, total order broadcast abstraction,
WW constraint.

How to Use This Book

This section presents two courses on distributed computing which can benefit from
the concepts, algorithms and principles presented in this book. Each course is a
one-semester course, and they are designed to be sequential (a full year at the un-
dergraduate level, or split, with the first course at the undergraduate level and the
second at the beginning of the graduate level).

e A first one-semester course on distributed computing could first focus on Part I,
which is devoted to graph algorithms. Then, the course could address (a) dis-
tributed mutual exclusion (Chap. 10), (b) causal message delivery and total order

474 Afterword

broadcast (Chap. 12), and (c) distributed termination detection (Chap. 14), if time
permits.

The spirit of this course is to be an introductory course, giving students a cor-
rect intuition of what distributed algorithms are (they are not simple “extensions”
of sequential algorithms), and show them that there are problems which are spe-
cific to distributed computing.

e A second one-semester course on distributed computing could first address the
concept of a global state (Chap. 6). The aim is here to give the student a precise
view of what a distributed execution is and introduce the notion of a global state.
Then, the course could develop and illustrate the different notions of logical times
(Chap. 7).

Distributed checkpointing (Chap. 8), synchronizers (Chap. 9), resource alloca-
tion (Chap. 11), rendezvous communication (Chap. 13), and deadlock detection
(Chap. 15), can be used to illustrate the previous notions.

Finally, the meaning and the implementation of a distributed shared memory
(Part VI) could be presented to introduce the notion of a consistency condition,
which is a fundamental notion of distributed computing.

Of course, this book can also be used by engineers and researchers who work
on distributed applications to better understand the concepts and mechanisms that
underlie their work.

From Failure-Free Systems to Failure-Prone Systems

This book was devoted to algorithms for failure-free asynchronous distributed ap-
plications and systems. Once the fundamental notions, concepts, and algorithms
of failure-free distributed computing are mastered, one can focus on more spe-
cific topics of failure-prone distributed systems. In such a context, the com-
bined effect of asynchrony and failures create uncertainty that algorithms have
to cope with. The reader interested in the net effect of asynchrony and failure
on the design of distributed algorithms is invited to consult the following books:
[24, 67, 150, 155, 219, 242, 315, 316] (to cite a few).

A Series of Books

This book completes a series of four books, written by the author, devoted to concur-
rent and distributed computing [315-317]. More precisely, we have the following.

e As has been seen, this book is on elementary distributed computing for failure-
free asynchronous systems.

e The book [317] is on algorithms in asynchronous shared memory systems where
processes can commit crash failures. It focuses on the construction of reliable
concurrent objects in the presence of process crashes.

A Series of Books 475

e The book [316] is on asynchronous message-passing systems where processes are
prone to crash failures. It presents communication and agreement abstractions
for fault-tolerant asynchronous distributed systems. Failure detectors are used to
circumvent impossibility results encountered in pure asynchronous systems.

e The book [315] is on synchronous message-passing systems, where the processes
are prone to crash failures, omission failures, or Byzantine failures. It focuses on
the following distributed agreement problems: consensus, interactive consistency,
and non-blocking atomic commit.

Enseigner, c’est réfléchir a voix haute devant les étudiants.
Henri-Léon Lebesgue (1875-1941)

Make everything as simple as possible, but not simpler.
Albert Einstein (1879-1955)

