
Merkle Search Trees:
Efficient State-based CRDTs in Open Networks

Alex Auvolat, François Täıani

Team WIDE
Univ. Rennes, Inria, CNRS, IRISA

alex.auvolat@inria.fr

October 3, 2019
SRDS 2019, Lyon, France

1 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Context

We consider the problem of efficient state reconciliation

Applicable to CRDTs that implement eventual consistency

2 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Example

3 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Example

3 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Example

3 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Example

3 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Our Setting

We study the simple case of storing and broadcasting events
(a distributed event store)

It is a simple CRDT: a grow-only set

The principles of this paper can be applied to other CRDTs

4 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Context: Large Networks

We consider a large network with many nodes

Nodes may join, leave and re-join at any time

Typically the case of large-scale geo-replicated systems

5 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Gossip in Very Large Networks

Nodes communicate with random other nodes
using a gossip protocol

Nodes do not keep track of other nodes’ states
(too expensive)

6 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Gossip in Very Large Networks

6 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Gossip in Very Large Networks

6 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Gossip in Very Large Networks

6 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Gossip in Very Large Networks

Nodes communicate with random other nodes
using a gossip protocol

Nodes do not keep track of other nodes’ states
(too expensive)

6 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



The Problem: How to Minimize Cost of Exchange?

Nodes must be able to exchange missing events
with zero a-priori knowledge on each other’s state,

with minimal data exchange.

This is known as anti-entropy.

7 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



SotA: Scuttlebutt Anti-entropy

Approach 1: vector clocks

Known as Scuttlebutt anti-entropy [1]
[1] Van Renesee et al., Efficient Reconciliation and Flow Control for

Anti-Entropy Protocols, 2008

The clock grows linearly with the number of nodes
→ inefficient in large networks
→ metadata for disconnected nodes cannot be discarded
→ fundamentally unsuited to networks with churn

8 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



SotA: Merkle Tree Anti-Entropy

Approach 2: Merkle trees

Encode the set of events in a Merkle tree

Enables efficient comparison between two remote sites:
equal subtrees have equal hashes and can be skipped entirely

Only paths to changed nodes need to be exchanged

9 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



What Is a Merkle Tree Anyways?

root hashroot hash
= hash

of this block

new or
modified hashes

10 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



What Is a Merkle Tree Anyways?

root hashroot hash
= hash

of this block

new or
modified hashes

10 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



What Is a Merkle Tree Anyways?

root hashroot hash
= hash

of this block

new or
modified hashes

10 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



What Is a Merkle Tree Anyways?

root hashroot hash
= hash

of this block

new or
modified hashes

10 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Merkle Tree Remote Comparison

root hash root hash

11 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Merkle Tree Remote Comparison

root hashroot hash root hashroot hash

11 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Merkle Tree Remote Comparison

root hashroot hash root hashroot hash

11 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Merkle Tree Remote Comparison

root hashroot hash root hashroot hash

11 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Merkle Tree Remote Comparison

root hashroot hash root hashroot hash

11 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Kinds of Merkle Trees: State of the Art

Standard Merkle trees: balanced binary tree

keys = integers from 0 to n
→ too restrictive for our use case

Merkle hash prefix trees:
Keys can be any values in any space with a hash function

Algorithm: hash the keys and build a prefix tree
→ uses randomization to generate a balanced tree

12 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Our Contribution: Merkle Search Trees

Issue: the new events end up in different branches,
lots of data needs to be exchanged for intermediate nodes

Our contribution: a tree structure that preserves order

We order events by their creation timestamp
→ new events end up close together

13 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Our Contribution: Merkle Search Trees

new events

Randomized order
Merkle hash prefix tree

13 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Our Contribution: Merkle Search Trees

Issue: the new events end up in different branches,
lots of data needs to be exchanged for intermediate nodes

Our contribution: a tree structure that preserves order

We order events by their creation timestamp
→ new events end up close together

13 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Our Contribution: Merkle Search Trees

new
eventsnew events

SotA:
Randomized order

Our Solution:
Preserved order

13 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Our Contribution: Merkle Search Trees

x1 < x2 < x3 < x4 < x5 < x6 < x7 < x8 < x9 < x10 < x11
hB = hash written in base B

layer 0
hB (xi ) = XXX . . .

layer 1
hB (xi ) = 0XX . . .

layer 2
hB (xi ) = 00X . . .

x1 x5 x10

x9 x11

x3 x4x2 x6 x8x7

root hash

X = any digit except 0

Use randomization to generate a balanced tree structure,
but preserve the order of items

14 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Theoretical Comparison: Merkle Trees vs. Scuttlebutt

Theoretical comparison

Anti-entropy algorithm
Dissemination

time
Traffic per

anti-entropy round
Scuttlebutt (vector clocks) 2λ log m O(p + d)
Merkle Search Trees 2λ log m logB n O(d logB n)

p number of nodes, past and present
m number of nodes currently connected
n number of past events
d number of new events in anti-entropy round
λ network latency

15 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Experimental Evaluation

We evaluate Merkle Search Trees against:

SB: Scuttlebutt (vector clocks)

MPT: Merkle hash prefix trees (do not preserve order)

By adjusting the interval between gossip events,
we can adapt for faster delivery or lower bandwidth use

16 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Experimental Evaluation

We test our experiment in a simulation:

1000 nodes that generate events at random

First experiment: 1 event every 10 simulation rounds
(in the whole network)

17 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Experimental Results: Low Event Rate

0 10000 20000 30000
Time (rounds)

0

1

2

3

4

Ba
nd

wi
th

 u
sa

ge
 (b

yt
es

 p
er

 ro
un

d) 1e6
Scuttlebutt
MPT
MST (ours)

5 10
Entropy of round (average)

0.5

1.0

1.5

2.0

2.5

By
te

s s
en

t p
er

 ro
un

d 
(a

ve
ra

ge
) 1e6 Trade-off

Scuttlebutt
MPT
MST (ours)

Method Bandwidth usea Entropyb 99% delivery delay
Scuttlebutt 1.3 Mo 1.61 64 rounds
MPT 0.51 Mo 1.44 56 rounds
MST (ours) 0.44 Mo 1.06 44 rounds
Gain vs. SB -66% -34% -31%
Gain vs. MPT -13% -26% -21%

aper round, on average
bat each round, on average

18 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Experimental Results: High Event Rate

Second experiment: 10 times higher event rate

1000 nodes

Method Bandwidth use Entropy 99% delivery delay
Scuttlebutt 2.1 Mo 15.4 50 rounds
MST (ours) 2.2 Mo 17.5 74 rounds

2000 nodes

Scuttlebutt 7.6 Mo 14.9 54 rounds
MST (ours) 4.2 Mo 21.0 88 rounds

19 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Experimental Results: Finding the Best Option

1034 × 102 6 × 102 2 × 103

Number of nodes

10 1

100

101

E
v
e
n
ts

 p
e
r 

ro
u
n
d

Scuttlebutt is better

MST is better

Ex-aequo

Theoretical boundary

Merkle Search Trees are competitive for low event rates

Merkle Search Trees scale better when many nodes participate

20 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Conclusion

Merkle Search Trees are an efficient way of implementing
CRDTs in open networks

Merkle Search Trees could have many other applications
(examples: distributed databases)

See our paper for more details:
Alex Auvolat and François Täıani, Merkle Search Trees: Efficient State-based CRDTs

in Open Networks, SRDS 2019

21 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France


