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Context

We consider the problem of efficient state reconciliation

Applicable to CRDTs that implement eventual consistency

2 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Example

3 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Example

3 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Example

3 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Example

3 / 21 Alex Auvolat Merkle Search Trees October 3, 2019 @ SRDS, Lyon, France



Our Setting

We study the simple case of storing and broadcasting events
(a distributed event store)

It is a simple CRDT: a grow-only set

The principles of this paper can be applied to other CRDTs
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Context: Large Networks

We consider a large network with many nodes

Nodes may join, leave and re-join at any time

Typically the case of large-scale geo-replicated systems
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Gossip in Very Large Networks

Nodes communicate with random other nodes
using a gossip protocol

Nodes do not keep track of other nodes’ states
(too expensive)
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The Problem: How to Minimize Cost of Exchange?

Nodes must be able to exchange missing events
with zero a-priori knowledge on each other’s state,

with minimal data exchange.

This is known as anti-entropy.
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SotA: Scuttlebutt Anti-entropy

Approach 1: vector clocks

Known as Scuttlebutt anti-entropy [1]
[1] Van Renesee et al., Efficient Reconciliation and Flow Control for

Anti-Entropy Protocols, 2008

The clock grows linearly with the number of nodes
→ inefficient in large networks
→ metadata for disconnected nodes cannot be discarded
→ fundamentally unsuited to networks with churn
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SotA: Merkle Tree Anti-Entropy

Approach 2: Merkle trees

Encode the set of events in a Merkle tree

Enables efficient comparison between two remote sites:
equal subtrees have equal hashes and can be skipped entirely

Only paths to changed nodes need to be exchanged
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What Is a Merkle Tree Anyways?

root hashroot hash
= hash

of this block

new or
modified hashes
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Merkle Tree Remote Comparison

root hash root hash
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Kinds of Merkle Trees: State of the Art

Standard Merkle trees: balanced binary tree

keys = integers from 0 to n
→ too restrictive for our use case

Merkle hash prefix trees:
Keys can be any values in any space with a hash function

Algorithm: hash the keys and build a prefix tree
→ uses randomization to generate a balanced tree
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Our Contribution: Merkle Search Trees

Issue: the new events end up in different branches,
lots of data needs to be exchanged for intermediate nodes

Our contribution: a tree structure that preserves order

We order events by their creation timestamp
→ new events end up close together
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Our Contribution: Merkle Search Trees

new events

Randomized order
Merkle hash prefix tree
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Our Contribution: Merkle Search Trees

new
eventsnew events

SotA:
Randomized order

Our Solution:
Preserved order
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Our Contribution: Merkle Search Trees

x1 < x2 < x3 < x4 < x5 < x6 < x7 < x8 < x9 < x10 < x11
hB = hash written in base B

layer 0
hB (xi ) = XXX . . .

layer 1
hB (xi ) = 0XX . . .

layer 2
hB (xi ) = 00X . . .

x1 x5 x10

x9 x11

x3 x4x2 x6 x8x7

root hash

X = any digit except 0

Use randomization to generate a balanced tree structure,
but preserve the order of items
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Theoretical Comparison: Merkle Trees vs. Scuttlebutt

Theoretical comparison

Anti-entropy algorithm
Dissemination

time
Traffic per

anti-entropy round
Scuttlebutt (vector clocks) 2λ log m O(p + d)
Merkle Search Trees 2λ log m logB n O(d logB n)

p number of nodes, past and present
m number of nodes currently connected
n number of past events
d number of new events in anti-entropy round
λ network latency
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Experimental Evaluation

We evaluate Merkle Search Trees against:

SB: Scuttlebutt (vector clocks)

MPT: Merkle hash prefix trees (do not preserve order)

By adjusting the interval between gossip events,
we can adapt for faster delivery or lower bandwidth use
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Experimental Evaluation

We test our experiment in a simulation:

1000 nodes that generate events at random

First experiment: 1 event every 10 simulation rounds
(in the whole network)
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Experimental Results: Low Event Rate
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Method Bandwidth usea Entropyb 99% delivery delay
Scuttlebutt 1.3 Mo 1.61 64 rounds
MPT 0.51 Mo 1.44 56 rounds
MST (ours) 0.44 Mo 1.06 44 rounds
Gain vs. SB -66% -34% -31%
Gain vs. MPT -13% -26% -21%

aper round, on average
bat each round, on average
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Experimental Results: High Event Rate

Second experiment: 10 times higher event rate

1000 nodes

Method Bandwidth use Entropy 99% delivery delay
Scuttlebutt 2.1 Mo 15.4 50 rounds
MST (ours) 2.2 Mo 17.5 74 rounds

2000 nodes

Scuttlebutt 7.6 Mo 14.9 54 rounds
MST (ours) 4.2 Mo 21.0 88 rounds
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Experimental Results: Finding the Best Option
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Merkle Search Trees are competitive for low event rates

Merkle Search Trees scale better when many nodes participate
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Conclusion

Merkle Search Trees are an efficient way of implementing
CRDTs in open networks

Merkle Search Trees could have many other applications
(examples: distributed databases)

See our paper for more details:
Alex Auvolat and François Täıani, Merkle Search Trees: Efficient State-based CRDTs

in Open Networks, SRDS 2019
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