
High Level Primitives
in Byzantine Systems

Alex Auvolat

WIDE Team Seminar, May 16-17, 2019

1 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Outline

Byzantine systems: BAMPn,t [. . . ]

Reliable broadcast
(Bracha, 1984)

FIFO broadcastCausal broadcast SCD broadcast

Sequential specifications of objects
with some restrictions

Snapshot
Asset Transfer

etc.

Update
consistency

Sequential
consistency

Generic algorithm

BAMPn,t [t < n/3] BAMPn,t [t < n/4]

2 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



An example: Trustworthy Asset Transfer (AT2)

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

impossible!

Guarantees:

No money is ever created or destroyed

An account always has a balance ≥ 0

3 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



An example: Trustworthy Asset Transfer (AT2)

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

impossible!

Guarantees:

No money is ever created or destroyed

An account always has a balance ≥ 0

3 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



An example: Trustworthy Asset Transfer (AT2)

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

impossible!

Guarantees:

No money is ever created or destroyed

An account always has a balance ≥ 0

3 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



An example: Trustworthy Asset Transfer (AT2)

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

A1 -150 C +150 C

impossible!

Guarantees:

No money is ever created or destroyed

An account always has a balance ≥ 0

3 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



An example: Trustworthy Asset Transfer (AT2)

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

A1 -150 C +150 C

impossible!

Guarantees:

No money is ever created or destroyed

An account always has a balance ≥ 0

3 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



An example: Trustworthy Asset Transfer (AT2)

AT2: introduced in Guerraoui et al., 2018

Question: general modular approach?

→ high-level communication abstractions in Byzantine systems
→ consistency criteria in Byzantine systems

4 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



An example: Trustworthy Asset Transfer (AT2)

AT2: introduced in Guerraoui et al., 2018

Question: general modular approach?

→ high-level communication abstractions in Byzantine systems
→ consistency criteria in Byzantine systems

4 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



System Model

n nodes (or processes)

5 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



System Model

Up to t Byzantine nodes

6 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Byzantine Behaviour

A Byzantine process may deviate arbitrarily from the spec.
It may omit messages or send arbitrary messages.

A Byzantine process may send messages with arbitrary delays.

A Byzantine process may also behave like a correct process.

Byzantine processes may coordinate their malicious actions.

7 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Byzantine Behaviour

A Byzantine process may deviate arbitrarily from the spec.
It may omit messages or send arbitrary messages.

A Byzantine process may send messages with arbitrary delays.

A Byzantine process may also behave like a correct process.

Byzantine processes may coordinate their malicious actions.

7 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Byzantine Behaviour

A Byzantine process may deviate arbitrarily from the spec.
It may omit messages or send arbitrary messages.

A Byzantine process may send messages with arbitrary delays.

A Byzantine process may also behave like a correct process.

Byzantine processes may coordinate their malicious actions.

7 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Byzantine Behaviour

A Byzantine process may deviate arbitrarily from the spec.
It may omit messages or send arbitrary messages.

A Byzantine process may send messages with arbitrary delays.

A Byzantine process may also behave like a correct process.

Byzantine processes may coordinate their malicious actions.

7 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Byzantine Behaviour

A Byzantine process may not pretend to be another process.
The system model guarantees the identity of the sender.

8 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



System Model

Authenticated point-to-point links

Asynchronous message passing

9 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



System Model

Authenticated point-to-point links
Asynchronous message passing

9 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Byzantine Reliable Broadcast

One-shot Byzantine Reliable Broadcast: a fundamental primitive.

BR-Validity. If a correct process br-delivers a message m from a correct
process pi , then pi br-broadcast m.

BR-Integrity. A correct process br-delivers at most one message m from a
process pi .

BR-Termination-1. If a correct process br-broadcasts a message, it
br-delivers it.

BR-Termination-2. If a correct process br-delivers a message m from pi
(possibly Byzantine) then all correct processes eventually br-deliver m
from pi .

10 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Tolerance to Byzantine Nodes

G. Bracha (1984): tolerant to t < n/3 Byzantine nodes.

D. Imbs, M. Raynal (2016): lower message complexity.
Tolerant to t < n/5 Byzantine nodes.

All algorithms we build over BRB have the same requirements as
the selected underlying BRB implementation.
They may also have their own independent requirements
(e.g. t < n/4 for SCD broadcast).

11 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Tolerance to Byzantine Nodes

G. Bracha (1984): tolerant to t < n/3 Byzantine nodes.

D. Imbs, M. Raynal (2016): lower message complexity.
Tolerant to t < n/5 Byzantine nodes.

All algorithms we build over BRB have the same requirements as
the selected underlying BRB implementation.
They may also have their own independent requirements
(e.g. t < n/4 for SCD broadcast).

11 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Tolerance to Byzantine Nodes

G. Bracha (1984): tolerant to t < n/3 Byzantine nodes.

D. Imbs, M. Raynal (2016): lower message complexity.
Tolerant to t < n/5 Byzantine nodes.

All algorithms we build over BRB have the same requirements as
the selected underlying BRB implementation.
They may also have their own independent requirements
(e.g. t < n/4 for SCD broadcast).

11 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Multi-shot BRB

We need multple instances of BRB so that each process can send
several messages.

br broadcast(〈i , sni 〉,m)

BR-broadcast of message m by process pi with sequence number sni .

These instances operate independently.
(no order guarantee between instances)

12 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Multi-shot BRB

We need multple instances of BRB so that each process can send
several messages.

br broadcast(〈i , sni 〉,m)

BR-broadcast of message m by process pi with sequence number sni .

These instances operate independently.
(no order guarantee between instances)

12 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Multi-shot BRB

We need multple instances of BRB so that each process can send
several messages.

br broadcast(〈i , sni 〉,m)

BR-broadcast of message m by process pi with sequence number sni .

These instances operate independently.
(no order guarantee between instances)

12 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



AT2 over BRB

init init[1..n]: constant array where init[k] is the initial value of pk account;
histi [1..n]← [∅, · · · , ∅]; deli [1..n]← [0, · · · , 0]; sni ← 0.

operation transfer(j , v) is
(1) if (balance(i) < v)
(2) then return(abort)
(3) else sni ← sni + 1; donei ← false;
(4) br broadcast (〈i , sni 〉,transfer(j , v));
(5) wait (donei ); return(commit).

when (〈j , sn〉, transfer(k, v)) is br delivered from pj do
(6) wait (balance(j) ≥ v) ∧ (deli [j ] + 1 = sn);
(7) histi [j ]← histi [j ] ∪ {〈k, v〉};
(8) deli [j ]← sn;
(9) if (j = i) then donei ← true.

internal function balance(j) is
(10) return(init[j ] +

∑
`

∑
〈j,vx 〉∈histi [`] vx −

∑
〈−,vx 〉∈histi [j]

vx).

13 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



AT2 Behaviour

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

14 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



AT2 Behaviour

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

A1 -150 C +150 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

14 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



AT2 Behaviour

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

A1 -150 C +150 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

14 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



AT2 Behaviour

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

A1 -150 C +150 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

14 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



AT2 Behaviour

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

14 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



AT2 Behaviour

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

14 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Let’s Split It Up

Byzantine systems: BAMPn,t [. . . ]

Reliable broadcast
(Bracha, 1984)

FIFO broadcastCausal broadcast SCD broadcast

Sequential specifications of objects
with some restrictions

Snapshot
Asset Transfer

etc.

Update
consistency

Sequential
consistency

BAMPn,t [t < n/3] BAMPn,t [t < n/4]

Specialized
AT2 Algorithm

Generic algorithm

15 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Let’s Split It Up

Byzantine systems: BAMPn,t [. . . ]

Reliable broadcast
(Bracha, 1984)

FIFO broadcastCausal broadcast SCD broadcast

Update
consistency

Sequential
consistency

Generic algorithm

BAMPn,t [t < n/3] BAMPn,t [t < n/4]

Snapshot
Asset Transfer

etc.

Sequential specifications of objects
with some restrictions

16 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Sequential Specifications of Objects

What? Why? How does it relate to causality?

Key ideas:

1 Specify the behaviour of distributed objects assuming a
sequential execution (operations are totally ordered)
→ sequential specification

2 Relate the behaviour of the actual distributed implementation
more or less strongly to the sequential specification
→ consistency criterion

17 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Sequential Specifications of Objects

To specify an object:

What are its possible states? (Q)

What is its initial state? (q0)

What are the possible operations?

How do operations mutate the state and what do they return?

18 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A First Example: A Stack

q0 = ε

q
push(x)/true−−−−−−−−→ q.x

q.x
pop/x−−−→ q

ε
pop/⊥−−−−→ ε

Notation: ε is the empty word.

19 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



An Example With Permissions

Different process may not be able to do the same operations.
We introduce a notion of permissions.

Example: single-writer multi-reader snapshot.
A state q is a map from processes to values.

q
pi :write(i ,x)/true−−−−−−−−−−→ q[i ← x ]

q
pi :write(j ,x)/false−−−−−−−−−−−→

if j 6=i
q

q
p:snapshot/q−−−−−−−−→ q

Notation: q[i ← x ] is the map q modified with q[i ] = x .

20 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



An Example With Permissions

Different process may not be able to do the same operations.
We introduce a notion of permissions.

Example: single-writer multi-reader snapshot.
A state q is a map from processes to values.

q
pi :write(i ,x)/true−−−−−−−−−−→ q[i ← x ]

q
pi :write(j ,x)/false−−−−−−−−−−−→

if j 6=i
q

q
p:snapshot/q−−−−−−−−→ q

Notation: q[i ← x ] is the map q modified with q[i ] = x .

20 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Read/Write Commit/Abort

We require that read and write operations be clearly differentiated.

Read operations:

May return any value
Do not change the state

q
p:read op/r−−−−−−−→ q

Write operations:

Either return true and possibly change the state
Or return false and keep the same state

q
p:write op/true−−−−−−−−−→ q′

q
p:write op/false−−−−−−−−−−→ q

21 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Read/Write Commit/Abort

We require that read and write operations be clearly differentiated.

Read operations:

May return any value
Do not change the state

q
p:read op/r−−−−−−−→ q

Write operations:

Either return true and possibly change the state
Or return false and keep the same state

q
p:write op/true−−−−−−−−−→ q′

q
p:write op/false−−−−−−−−−−→ q

21 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Read/Write Commit/Abort

We require that read and write operations be clearly differentiated.

Read operations:

May return any value
Do not change the state

q
p:read op/r−−−−−−−→ q

Write operations:

Either return true and possibly change the state
Or return false and keep the same state

q
p:write op/true−−−−−−−−−→ q′

q
p:write op/false−−−−−−−−−−→ q

21 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Example: Multi-AT2 Specification

A state q is a map from accounts a to balances.

An account a may have several owners, noted owners(a).

q
p:transfer(a,b,v)/true−−−−−−−−−−−−−−−−→

if p∈owners(a) and v≤q[a]
q
[
a←q[a]−v
b←q[b]+v

]
q

p:transfer(a,b,v)/false−−−−−−−−−−−−−−−→
if p/∈owners(a) or v>q[a]

q

q
p:balance(a)/q[a]−−−−−−−−−−→ q

22 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order is Not (That) Important

Alice Bob Carol
Initial 100 C 100 C 10 000 C

23 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order is Not (That) Important

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

true 100 C 150 C 9 950 C

23 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order is Not (That) Important

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

true 100 C 150 C 9 950 C

C2 +50 C -50C

true 150 C 150 C 9 900 C

23 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order is Not (That) Important

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

true 100 C 150 C 9 950 C

C2 +50 C -50C

true 150 C 150 C 9 900 C

A1 -200 C +200 C

false impossible!

23 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order is Not (That) Important

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

true 100 C 150 C 9 950 C

C2 +50 C -50C

true 150 C 150 C 9 900 C

A1 -200 C +200 C

false impossible!

B1 +100 C -100 C

true 250 C 50 C 9 900 C

23 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order is Not (That) Important

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C2 +50 C -50 C

true 150 C 100 C 9 950 C

C1 +50 C -50C

true 150 C 150 C 9 900 C

A1 -200 C +200 C

false impossible!

B1 +100 C -100 C

true 250 C 50 C 9 900 C

23 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order is Not (That) Important

Alice Bob Carol
Initial 100 C 100 C 10 000 C

A1 -200 C +200 C

false impossible!

C1 +50 C -50C

true 100 C 150 C 9 950 C

C2 +50 C -50 C

true 150 C 150 C 9 900 C

B1 +100 C -100 C

true 250 C 50 C 9 900 C

23 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order is Not (That) Important

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

true 100 C 150 C 9 950 C

C2 +50 C -50C

true 150 C 150 C 9 900 C

B1 +100 C -100 C

true 250 C 50 C 9 900 C

A1 -200 C +200 C

true 50 C 250 C 9 900 C

23 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order is Not (That) Important

If:

we can execute write operations in another order
and each operation still returns the same value

(true or false, success or error)

Then:

the final state is the same

We call this property commit-bound order independance (CBOI)

24 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Problem

A problem with shared account:

Alice & Bob Carol Dave
Initial 100 C 10 000 C 100 C

25 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Problem

A problem with shared account:

Alice & Bob Carol Dave
Initial 100 C 10 000 C 100 C

Alice 1 -50 C +50 C

true 50 C 10 000 C 150 C

25 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Problem

A problem with shared account:

Alice & Bob Carol Dave
Initial 100 C 10 000 C 100 C

Alice 1 -50 C +50 C

25 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Problem

A problem with shared account:

Alice & Bob Carol Dave
Initial 100 C 10 000 C 100 C

Bob 1 -80 C +80 C

true 20 C 10 080 C 100 C

Alice 1 -50 C +50 C

25 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Problem

A problem with shared account:

Alice & Bob Carol Dave
Initial 100 C 10 000 C 100 C

Bob 1 -80 C +80 C

true 20 C 10 080 C 100 C

Alice 1 -50 C +50 C

false impossible!

25 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Solution

We must require an additionnal property:

If:

a process executes a write operation o
o succeeds (returns true)

Then, if:

we add operations by other processes before o

Then:

o still succeeds

We call this property local commit stability (LC-stability)

26 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Solution

In the case of AT2:

At most one process must be allowed to withdraw
from any given account

(i.e. at most one owner per account)

CBOI + LC-stable is the condition under which we can implement
the object without concensus

27 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Solution

In the case of AT2:

At most one process must be allowed to withdraw
from any given account

(i.e. at most one owner per account)

CBOI + LC-stable is the condition under which we can implement
the object without concensus

27 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



In a Distributed System

If:

a correct process pi invokes an operation o
and

that operation succeeds locally (at pi )

Then:

all other correct processes will also be able to
apply o successfully on their local state

Because:

Reliable broadcast: all other processes will eventually see all the
operations that happenned before o at pi

LC-stable: all operations that pi hadn’t seen yet when it executed o
cannot prevent o from succeeding

28 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Order of Operations

Thus, the following requirements on the event processing order:

FIFO: the operations of one process must be handled at other
processes in the same order as they were invoked
(future operations by the same process may prevent the current

operation)

Causal: if pi saw some operations before invoking o, then
other processes must also process these operations before
processing o

Total order (i.e. concensus) is not required!

29 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Back to Communication Primitives

Byzantine systems: BAMPn,t [. . . ]

BAMPn,t [t < n/4]
SCD broadcast

Sequential
consistency

Update
consistency

Generic algorithm

Sequential specifications of objects
with some restrictions

Snapshot
Asset Transfer

etc.

Reliable broadcast
(Bracha, 1984)

FIFO broadcastCausal broadcast
BAMPn,t [t < n/3]

30 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Definition of Causal Order

pi
m′

m

m→M m′

pi
m′

m→M m′
m

31 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Definition of Causal Order

BC-FIFO. If a correct process pi bf-delivers messages m before
m′ from the same process pk (possibly Byzantine), then no
correct process bf-delivers m′ before m.
Moreover, if pk is correct, it bf-broadcast m before m′.

and

BC-Local-Order. If a correct process bc-delivers first a
message m and later bc-broadcasts a message m′, then no
correct process bc-delivers m′ before m.

No local order guarantee for Byzantine processes!

32 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Definition of Causal Order

BC-FIFO. If a correct process pi bf-delivers messages m before
m′ from the same process pk (possibly Byzantine), then no
correct process bf-delivers m′ before m.
Moreover, if pk is correct, it bf-broadcast m before m′.

and

BC-Local-Order. If a correct process bc-delivers first a
message m and later bc-broadcasts a message m′, then no
correct process bc-delivers m′ before m.

No local order guarantee for Byzantine processes!

32 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Definition of Causal Order

pi
m′

m

m→M m′

pi
m′

m→M m′
m

These situations only make sense for non-Byzantine processes.

33 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Understanding the FIFO property

Correct sender: the correct processes deliver messages in the
order they were sent

Byzantine sender: the correct processes deliver messages in a
certain order, the same at all correct processes

34 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Understanding the FIFO property

Correct sender: the correct processes deliver messages in the
order they were sent

Byzantine sender: the correct processes deliver messages in a
certain order, the same at all correct processes

34 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



BF-broadcast algorithm

This simple algorithm implements only the FIFO order property.

init sni ← 0; deli ← [0, . . . , 0].

operation bf broadcast(m) is
(1) sni ← sni + 1;
(2) br broadcast(〈i , sni 〉,m).

when (〈j , sn〉,m) is br delivered from pj do
(3) wait

(
sn = deli [j ] + 1

)
;

(4) bf delivery of m from pj ;
(5) deli [j ]← deli [j ] + 1.

35 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Causal Barrier

Implementation of causal order: using the causal barrier set.

pi
m1 m2

m m′′

m′︸ ︷︷ ︸
cb(m2) = {id(m), id(m′), id(m′′)}

36 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Causal Order Graph

Also called set of immediate causal predecessors.

m2

m4

p2

m1

m3

p1

p2

m1 m2

m3

m4

cb(m4) = {id(m2), id(m3)}

37 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Byzantine Causal Broadcast Algorithm

init cbi ← ∅; sni ← 0; deli ← [0, . . . , 0].

operation bc broadcast(m) at pi is
(1) sni ← sni + 1;
(2) br broadcast(〈i , sni 〉, cb(m),m) where cb(m) = cbi ;
(3) cbi ← ∅.

when (〈j , sn〉, cb(m),m) is br delivered from pj at pi
(4) wait

(
(sn = deli [j ] + 1) ∧ (∀ 〈k, sn′〉 ∈ cb(m) : deli [k] ≥ sn′)

)
;

(5) cbi ← (cbi \ cb(m)) ∪ {〈j , sn〉};
(6) local bc delivery of m from pj ;
(7) deli [j ]← deli [j ] + 1.

Byzantine processes can always lie on their causal barrier, e.g. by
pretending that they haven’t yet received a previous message

38 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Byzantine Causal Broadcast Algorithm

init cbi ← ∅; sni ← 0; deli ← [0, . . . , 0].

operation bc broadcast(m) at pi is
(1) sni ← sni + 1;
(2) br broadcast(〈i , sni 〉, cb(m),m) where cb(m) = cbi ;
(3) cbi ← ∅.

when (〈j , sn〉, cb(m),m) is br delivered from pj at pi
(4) wait

(
(sn = deli [j ] + 1) ∧ (∀ 〈k, sn′〉 ∈ cb(m) : deli [k] ≥ sn′)

)
;

(5) cbi ← (cbi \ cb(m)) ∪ {〈j , sn〉};
(6) local bc delivery of m from pj ;
(7) deli [j ]← deli [j ] + 1.

Byzantine processes can always lie on their causal barrier, e.g. by
pretending that they haven’t yet received a previous message

38 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A First Generic Algorithm

Byzantine systems: BAMPn,t [. . . ]

BAMPn,t [t < n/4]
SCD broadcast

Sequential
consistency

Reliable broadcast
(Bracha, 1984)

FIFO broadcastCausal broadcast

Update
consistency

Generic algorithm

BAMPn,t [t < n/3]

Snapshot
Asset Transfer

etc.

Sequential specifications of objects
with some restrictions

39 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Update Consistency

Update consistency:

The local state of a process (on which it executes read operations)
must be the result of applying a certain set of write operations

following the sequential specification starting at q0

(with no requirement on the order in which different processes see different

operations)

Strong update consistency:
(the interesting one)

Same, and also:
All write operations must be eventually processed at all nodes

40 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



On Causality

Causal: if pi saw some operations before invoking o, then
other processes must also process these operations before
processing o

This is not even a strong requirement!

41 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



On Causality

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

42 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



On Causality

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

A1 -150 C +150 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

42 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



On Causality

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

A1 -150 C +150 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

42 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



On Causality

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

A1 -150 C +150 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

42 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



On Causality

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

42 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



On Causality

Alice Bob Carol
Initial 100 C 100 C 10 000 C

C1 +50 C -50 C

100 C 150 C 9 950 C

on hold...

C2 +50 C -50 C

A1 -150 C +150 C

0 C 300 C 9 900 C

42 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A First Algorithm

init statei ← q0; deli [1..n]← [0, · · · , 0]; sni ← 0.

operation o ∈W at pi is – o is a write operation

(1) if (∃q′ : statei
pi :o/true−−−−−→ q′)

(2) then sni ← sni + 1; donei ← false;
(3) br broadcast (〈i , sni 〉, o);
(4) wait (donei ); return(commit);
(5) else return(abort).

operation o ∈ R at pi is – o is a read operation

(6) let r such that statei
pi :o/r−−−→ statei ;

(7) return(r).

when (〈j , sn〉, o) is br delivered from pj do

(8) wait (∃q′ : statei
pj :o/true−−−−−→ q′) ∧ (deli [j ] + 1 = sn);

(9) statei ← q′; deli [j ]← sn;
(10) if (j = i) then donei ← true.

43 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A First Algorithm

A direct adaptation of the first algorithm given for AT2

Guarantees Strong Update Consistency for any CBOI
LC-stable sequential object

Issue: a Byzantine process may send an invalid operation and
the network will never reject it, it will be stuck forever!

44 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A First Algorithm

A direct adaptation of the first algorithm given for AT2

Guarantees Strong Update Consistency for any CBOI
LC-stable sequential object

Issue: a Byzantine process may send an invalid operation and
the network will never reject it, it will be stuck forever!

44 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A Better Algorithm

If we want correct processes to be able to reject some operations,
they must agree on which operations to accept or to reject.

Solution 1: use a concensus algorithm
(bad solution: concensus requires additionnal computing power,

equivalent to total order!)

Solution 2: use Byzantine causal broadcast and leverage the
causality information
(the values of cb associated with each message)

45 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A Better Algorithm

If we want correct processes to be able to reject some operations,
they must agree on which operations to accept or to reject.

Solution 1: use a concensus algorithm
(bad solution: concensus requires additionnal computing power,

equivalent to total order!)

Solution 2: use Byzantine causal broadcast and leverage the
causality information
(the values of cb associated with each message)

45 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A Better Algorithm with Byzantine Causal Broadcast

All processes see the same causality graph:

Alice
100 C

Bob
100 C

Carol
10 000 C

tx(C,A,50C)

tx(C,B,50C)

tx(C,A,50C)

tx(B,A,150C)

tx(A,B,150C)

46 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A Better Algorithm with Byzantine Causal Broadcast

Algorithm:

[omitted]

When an operation is invoked: same as previously, except that we use
BC-broadcast instead of BR-broadcast

When an operation is received from another process:

1 Extract the set of operations that are predecessors in the causal graph

2 Apply them in a topological sort order following the sequential
specification starting from q0, leading to a state q

3 If the new operation can be applied successfully at state q, apply it on
current statei

4 Otherwise, reject the operation

47 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A Better Algorithm with Byzantine Causal Broadcast

Algorithm:

[omitted]

When an operation is invoked: same as previously, except that we use
BC-broadcast instead of BR-broadcast

When an operation is received from another process:

1 Extract the set of operations that are predecessors in the causal graph

2 Apply them in a topological sort order following the sequential
specification starting from q0, leading to a state q

3 If the new operation can be applied successfully at state q, apply it on
current statei

4 Otherwise, reject the operation

47 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A Better Algorithm with Byzantine Causal Broadcast

Algorithm:

[omitted]

When an operation is invoked: same as previously, except that we use
BC-broadcast instead of BR-broadcast

When an operation is received from another process:

1 Extract the set of operations that are predecessors in the causal graph

2 Apply them in a topological sort order following the sequential
specification starting from q0, leading to a state q

3 If the new operation can be applied successfully at state q, apply it on
current statei

4 Otherwise, reject the operation

47 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A Better Algorithm with Byzantine Causal Broadcast

Algorithm:

[omitted]

When an operation is invoked: same as previously, except that we use
BC-broadcast instead of BR-broadcast

When an operation is received from another process:

1 Extract the set of operations that are predecessors in the causal graph

2 Apply them in a topological sort order following the sequential
specification starting from q0, leading to a state q

3 If the new operation can be applied successfully at state q, apply it on
current statei

4 Otherwise, reject the operation

47 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A Better Algorithm with Byzantine Causal Broadcast

Algorithm:

[omitted]

When an operation is invoked: same as previously, except that we use
BC-broadcast instead of BR-broadcast

When an operation is received from another process:

1 Extract the set of operations that are predecessors in the causal graph

2 Apply them in a topological sort order following the sequential
specification starting from q0, leading to a state q

3 If the new operation can be applied successfully at state q, apply it on
current statei

4 Otherwise, reject the operation

47 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



A Better Algorithm with Byzantine Causal Broadcast

Algorithm:

[omitted]

When an operation is invoked: same as previously, except that we use
BC-broadcast instead of BR-broadcast

When an operation is received from another process:

1 Extract the set of operations that are predecessors in the causal graph

2 Apply them in a topological sort order following the sequential
specification starting from q0, leading to a state q

3 If the new operation can be applied successfully at state q, apply it on
current statei

4 Otherwise, reject the operation

47 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Set-Constraint Delivery Broadcast

Byzantine systems: BAMPn,t [. . . ]

Reliable broadcast
(Bracha, 1984)

BAMPn,t [t < n/3]
Causal broadcast

Sequential specifications of objects
with some restrictions

Update
consistency

Generic algorithm

Snapshot
Asset Transfer

etc.

Sequential
consistency

FIFO broadcast
BAMPn,t [t < n/4]
SCD broadcast

48 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Set-Constraint Delivery Broadcast

We no longer deliver single messages, but sets of messages.

Example: {m1,m2}, {m3}, {m4,m5,m6}, . . .

Order property: if a correct process bscd-delivers a set ms1

containing m1 and later a set ms2 containing m2, then no
correct process bscd-delivers a set ms ′1 containing m2 and
later a set ms ′2 containing m1.

Correct: pi : {m1,m2}, {m3}, {m4,m5,m6}, . . .
pj : {m1,m2,m3}, {m4}, {m5,m6}, . . .

Incorrect: pi : {m1,m2}, {m3}, {m4,m5,m6}, . . .
pj : {m1,m3}, {m2,m4}, {m5,m6}, . . .

49 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Set-Constraint Delivery Broadcast

We no longer deliver single messages, but sets of messages.

Example: {m1,m2}, {m3}, {m4,m5,m6}, . . .

Order property: if a correct process bscd-delivers a set ms1

containing m1 and later a set ms2 containing m2, then no
correct process bscd-delivers a set ms ′1 containing m2 and
later a set ms ′2 containing m1.

Correct: pi : {m1,m2}, {m3}, {m4,m5,m6}, . . .
pj : {m1,m2,m3}, {m4}, {m5,m6}, . . .

Incorrect: pi : {m1,m2}, {m3}, {m4,m5,m6}, . . .
pj : {m1,m3}, {m2,m4}, {m5,m6}, . . .

49 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Set-Constraint Delivery Broadcast

We no longer deliver single messages, but sets of messages.

Example: {m1,m2}, {m3}, {m4,m5,m6}, . . .

Order property: if a correct process bscd-delivers a set ms1

containing m1 and later a set ms2 containing m2, then no
correct process bscd-delivers a set ms ′1 containing m2 and
later a set ms ′2 containing m1.

Correct: pi : {m1,m2}, {m3}, {m4,m5,m6}, . . .
pj : {m1,m2,m3}, {m4}, {m5,m6}, . . .

Incorrect: pi : {m1,m2}, {m3}, {m4,m5,m6}, . . .
pj : {m1,m3}, {m2,m4}, {m5,m6}, . . .

49 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Set-Constraint Delivery Broadcast

We no longer deliver single messages, but sets of messages.

Example: {m1,m2}, {m3}, {m4,m5,m6}, . . .

Order property: if a correct process bscd-delivers a set ms1

containing m1 and later a set ms2 containing m2, then no
correct process bscd-delivers a set ms ′1 containing m2 and
later a set ms ′2 containing m1.

Correct: pi : {m1,m2}, {m3}, {m4,m5,m6}, . . .
pj : {m1,m2,m3}, {m4}, {m5,m6}, . . .

Incorrect: pi : {m1,m2}, {m3}, {m4,m5,m6}, . . .
pj : {m1,m3}, {m2,m4}, {m5,m6}, . . .

49 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



BSCD-Broadcast Algorithm

Algorithm:

[omitted, really a bit complex, check the paper]

Main idea: wait for a majority of processes to agree that m1 comes
before m2 if we want to bscd-deliver m1 before m2.

Does not require concensus: BSCD-broadcast is strictly
weaker than total order broadcast;

Our algorithm requires t < n/4.

50 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



BSCD-Broadcast Algorithm

Algorithm:

[omitted, really a bit complex, check the paper]

Main idea: wait for a majority of processes to agree that m1 comes
before m2 if we want to bscd-deliver m1 before m2.

Does not require concensus: BSCD-broadcast is strictly
weaker than total order broadcast;

Our algorithm requires t < n/4.

50 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



BSCD-Broadcast Algorithm

Algorithm:

[omitted, really a bit complex, check the paper]

Main idea: wait for a majority of processes to agree that m1 comes
before m2 if we want to bscd-deliver m1 before m2.

Does not require concensus: BSCD-broadcast is strictly
weaker than total order broadcast;

Our algorithm requires t < n/4.

50 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



BSCD-Broadcast Algorithm

Algorithm:

[omitted, really a bit complex, check the paper]

Main idea: wait for a majority of processes to agree that m1 comes
before m2 if we want to bscd-deliver m1 before m2.

Does not require concensus: BSCD-broadcast is strictly
weaker than total order broadcast;

Our algorithm requires t < n/4.

50 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Sequential Consistency

Update consistency:

The local state of a process (on which it executes read operations)
must be the result of applying a certain set of write operations

following the sequential specification starting at q0

(with no requirement on the order in which different processes see different

operations)

Sequential consistency:

There exists a total order of operations (not necessarily known to
processes) such that processes get the same return values to the
operations they invoke as if all the operations were executed in

that order following the sequential specification.

51 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Sequential Consistency

Update consistency:

The local state of a process (on which it executes read operations)
must be the result of applying a certain set of write operations

following the sequential specification starting at q0

(with no requirement on the order in which different processes see different

operations)

Sequential consistency:

There exists a total order of operations (not necessarily known to
processes) such that processes get the same return values to the
operations they invoke as if all the operations were executed in

that order following the sequential specification.

51 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Sequential Consistency with SCD

pi

pj

r1

{w1,w2}

w2 w1 r2

{w3}

w3 r3

r ′1

{w1}

w1 r ′2

{w2,w3}

w2 w3 r ′3

r1 w1 w2 r2 w3 r3r ′1 r ′2 r ′3Sequential
Order

SCD-delivery
of updates

52 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Computing Power: the Snapshot Object

init reg i ← [⊥, . . . ,⊥]; wsni ← [0, . . . , 0].

operation snapshot() is
(1) done i ← false; bscd broadcast sync(); wait(done i );
(2) return(reg i [1..n]).

operation write(v) is
(3) done i ← false; bscd broadcast write(v); wait(done i ).

when ms = { 〈j1, sn1, write(v1)〉, . . . , 〈jx , snx , write(vx )〉,
〈jx+1, snx+1, sync()〉, . . . , 〈jy , sny , sync()〉 }

is bscd-delivered do
(4) for each message 〈j , snj ,write(v)〉 ∈ ms do
(5) if (wsni [j] < snj) then regi [j]← v ; wsni [j]← snj end if
(6) end for;
(7) if ∃` : j` = i then done i ← true end if.

A linearizable Byzantine-tolerant SWMR snapshot object.

53 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Generic Algorithm

We can build a generic algorithm provided that:

Write operations commute

Write operations always apply their update, they cannot
fail/be refused

A generic algorithm for commit/abort sequential specs: probably
not so simple.

54 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Generic Algorithm

We can build a generic algorithm provided that:

Write operations commute

Write operations always apply their update, they cannot
fail/be refused

A generic algorithm for commit/abort sequential specs: probably
not so simple.

54 / 55 Alex Auvolat High Level Primitives in Byzantine Systems



Conclusion

Broadcast abstractions: powerful primitives

Hierarchy: BRB < BFIFO < (BC, BSCD), BC⊥BSCD

Sequential specifications of objects

How broadcast primitives relate to consistency criteria

AT2: causality+FIFO is the necessary condition,
not total order like Blockchain (too strong)

Update consistency ↔ BC broadcast, generic algorithm

No generic algorithm for sequential consistency (yet)

SCD ↔ atomic read/write registers

55 / 55 Alex Auvolat High Level Primitives in Byzantine Systems


