

Hybrid BCI for people with Duchenne muscular dystrophy

François Cabestaing

Rennes September 7th 2017

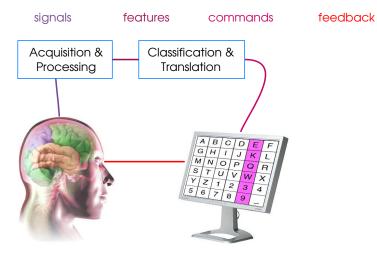
BCI timeline

- 1929 Electroencephalogram (Berger)
- 1965 Discovery of cognitive evoked potentials (Desmedt & Sutton)
- 1973 Brain-computer interface concept (Vidal)
- 1988 First BCI using evoked potentials (Farwell & Donchin)
- 1991 First BCI allowing a continuous 1D cursor control (Wolpaw)
- 2004 2D electrode matrix implanted in the motor cortex (BrainGate & Donoghue)
- 2010 Hybrid Brain-computer interface (Pfurtscheller)
- 2015 Exoskeleton for people with tetraplegia, Wimagine implant (Benabid)

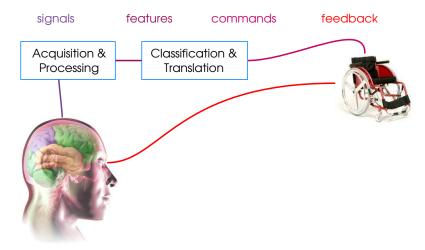
Berger

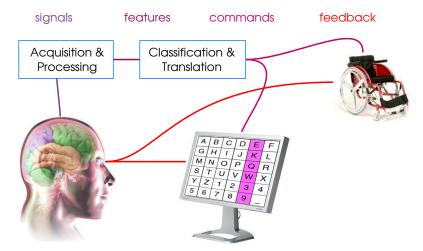
Desmedt

Vidal


Donchin

Wolpaw


Donoghue


Pfurtscheller

Benabid

state of the art – 2013, 13 articles

Hindawi Publishing Corporation Advances in Human-Computer Interaction Volume 2013, Article ID 187024, 8 pages http://dx.doi.org/10.1155/2013/187024

Review Article

A Review of Hybrid Brain-Computer Interface Systems

Setare Amiri, Reza Fazel-Rezai, and Vahid Asadpour

hybrid BCI taxonomy

- simultaneous: both modalities are used simultaneously to increase throughput and/or information accuracy
- sequential: one modality controls the other (for instance: activation or deactivation)

combination

- of two BCI interaction modalities: ERD/ERS, P300, SSVEP
- of two brain activity measurement methods: EEG, fNIRS
- with other signals not coming from brain: EOG, EMG, motion, etc.

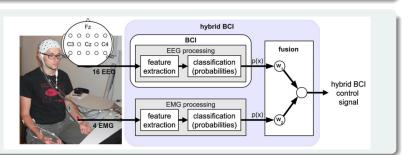
state of the art – 2017, 74 articles

COLLECTION REVIEW

A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives

Inchul Choi 10 , Ilsun Rhiu 20 , Yushin Lee 3 , Myung Hwan Yun 3 , Chang S. Nam 1*

summary of signal combinations


Туре	Input signals		# of studies (%)
Single brain signal	EEG	EEG	44 (59%)
Several physiological signals	EEG	EOG	6 (8%)
	EEG	EMG	3 (4%)
	EEG	EKG	2 (3%)
Brain signal and other input(s)	EEG	Gaze tracking	11 (15%)
	EEG	Joystick	2 (3%)
	EEG	Gyroscope	1 (1%)
Several brain signals	EEG	fNIRS	6 (8%)

hybrid BCI, with EEG and EMG

state of the art

- Riccio et al.: Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task.
- Lin et al.: An online hybrid BCI system based on SSVEP and EMG.
- Leeb et al.: A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities.

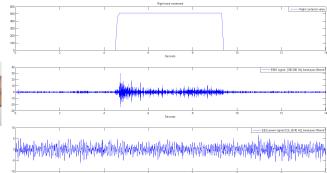
hybrid BCI for DMD patients

Duchenne muscular dystrophy

- the most severe dystrophinopathy, affects about one in 5,000 males at birth
- first clinical symptoms begin around 2/3 years, wheelchair at 12, ...
- but ... life expectancy has doubled in the last 20 years!

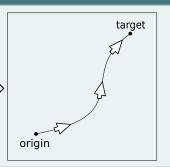
long term motor handicap

- better medical care has increased life expectancy, and therefore the duration of severe motor handicap situation has also increased
- current assistive technologies: micro-joysticks, gaze-trackers, etc.

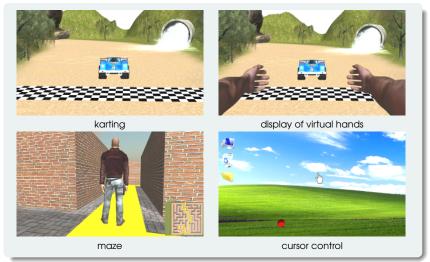

our proposed approach

- hybrid BCI: joysticks + EMG + EEG
- fusion of control signals, according to patient state, short or long term variations
- control strategy: left and/or right hand movements

joystick, EMG and EEG signals

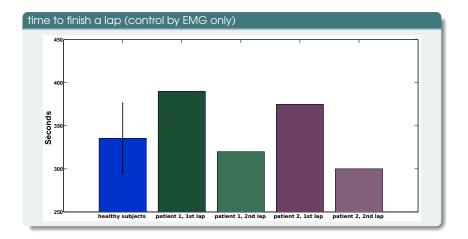

trajectory control

elementary actions


- 3 actions: left hand, right hand, both hands simultaneously
- 3 controls: turn left, turn right, go straight

trajectory vs. cursor control

user training: video game


pilot study: 2 DMD patients vs. 10 healthy subjects

control of a video game: karting

pilot study: 2 DMD patients vs. 10 healthy subjects

thank you ...

