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Valse

Analysis of distributed, uncertain and interconnected dynamic
systems, with design of estimation and control algorithms

Concepts:
* finite-time/fixed-time/hyper-exponential convergence

* theory of homogeneous systems

Areas of application:

loT and cyber-physical systems

Scientific leader: Denis Efimov






Drones, blimp, robots & cars
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Robust adaptive filtering for the living
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Oysters behavior

Modeling bivalves biological rhythm

biosensor s monitoring water quality
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Experimental setup
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Oysters as biosensors

» oysters can be used as biosensors for environmental
monitoring

e abnormal behavior may trigger pollution alarm

e spawning behavior is abnormal, as a deviation from normal
behavior

e particular rhythmic behavior during reproduction to expel
eggs

e Spawning observation is important in domains like
aquaculture, ecology, etc.

» detection process is manual until now .
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Oysters spawning

Oyster no. 1
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a series of rapid
contractions and relaxation

regularity in rhythm and
consistency in amplitude

duration 30 - 40 minutes
with short relaxation period
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Spawning detection algorithm

1.

. Ca

calculate velocity [ distance ]
culate energy from velocity :
[ velocity ]
pass the energy signal through ]
a low-pass filter
compare the filtered signal with
some pre-defined threshold no ‘
no spawning
. Spawning or no-spawning
decision T
spawning
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Velocity estimation

Velocity is the first order derivative of distance signal
Three numerical differentiators:
1. algebraic differentiator

2. non-homogeneous high-order sliding mode differentiator

3. homogeneous finite-time differentiator
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Algebraic differentiator

For a real valued signal y, analytic on some interval I, the first-
order derivative estimate is

~ (16
y = L %(T—ZT) y(t—17) dr

where 1 is the window length



Non-homogeneous high-order sliding mode

Consider the following unknown noisy signal

y(1) = () + v()
where v IS some bounded measurement noise

Consider
61(0) = = ay/ 1%, = 1) | sgn(x, (1) = F(0) + %00

X5(1) = — B sgn(x; (1) — y(2)) — y sgn(x, (1)) — x,(2)
where a > 0 and y > 0O are tuning parameters with > y

X1 is the estimate of y and x, is the estimate of y
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Homogeneous finite-time

For a real valued signal y, consider

X1 (1) = x5(0) — ky [x,(®) — y()]“
(1) = — ky[x, (1) — y(0)|**~!

where ki, k,, a > 0 are tuning parameters

X1 is the estimate of y and Xx, is the estimate of y
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Spawning detection

Spawning Detection Dashboard
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Bivalves behavior

Analyzing climate change consequences Svalbard




team.inria.fr/valse
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