Sur la modélisation et l'estimation du comportement du vivant

Rosane Ushirobira - VALSE

Valse

Analysis of distributed, uncertain and interconnected dynamic systems, with design of estimation and control algorithms

Concepts:

- * finite-time/fixed-time/hyper-exponential convergence
- * theory of homogeneous systems

Areas of application:

IoT and cyber-physical systems

Scientific leader: Denis Efimov

Valse

Drones, blimp, robots & cars

Robust adaptive filtering for the living

(nnía_

Oysters behavior

Modeling bivalves biological rhythm

biosensor monitoring water quality

Valse & EA-EPOC CNRS Bordeaux

Experimental setup

Andenno Castonia

Lege Dath Ferret

203

light coils glued on the valves

pro

Data

Oysters as biosensors

- oysters can be used as biosensors for environmental monitoring
- abnormal behavior may trigger pollution alarm
- spawning behavior is abnormal, as a deviation from normal behavior
- particular rhythmic behavior during reproduction to expel eggs
- spawning observation is important in domains like aquaculture, ecology, etc.
- detection process is manual until now

Innin

Oysters spawning

- a series of rapid contractions and relaxation
- regularity in rhythm and consistency in amplitude
- duration 30 40 minutes with short relaxation period
- simultaneous spawning in the population
- fluctuation in the velocity

Spawning detection algorithm

- 1. calculate velocity
- 2. calculate energy from velocity
- 3. pass the energy signal through a low-pass filter
- 4. compare the filtered signal with some pre-defined threshold
- 5. spawning or no-spawning decision

Velocity estimation

Velocity is the first order derivative of distance signal

Three numerical differentiators:

- 1. algebraic differentiator
- 2. non-homogeneous high-order sliding mode differentiator
- 3. homogeneous finite-time differentiator

Algebraic differentiator

For a real valued signal y, analytic on some interval I, the first-order derivative estimate is

$$\hat{y} = \int_0^T \frac{6}{T^3} (T - 2\tau) y(t - \tau) d\tau$$

where T is the window length

Non-homogeneous high-order sliding mode

Consider the following unknown noisy signal

$$\widetilde{y}(t) = y(t) + v(t)$$

where v is some bounded measurement noise

Consider

$$\begin{split} \dot{x}_1(t) &= -\alpha \sqrt{|x_1(t) - \widetilde{y}(t)|} \operatorname{sgn}(x_1(t) - \widetilde{y}(t)) + x_2(t) \\ \dot{x}_2(t) &= -\beta \operatorname{sgn}(x_1(t) - \widetilde{y}(t)) - \chi \operatorname{sgn}(x_2(t)) - x_2(t) \\ \text{where } \alpha > 0 \text{ and } \chi \ge 0 \text{ are tuning parameters with } \beta > \chi \end{split}$$

 x_1 is the estimate of y and x_2 is the estimate of \dot{y}

Homogeneous finite-time

For a real valued signal y, consider

$$\dot{x}_1(t) = x_2(t) - k_1 [x_1(t) - y(t)]^{\alpha}$$
$$\dot{x}_2(t) = -k_2 [x_1(t) - y(t)]^{2\alpha - 1}$$

where $k_1, k_2, \alpha > 0$ are tuning parameters

 x_1 is the estimate of y and x_2 is the estimate of \dot{y}

Spawning detection

(nnía-

Bivalves behavior

Analyzing climate change consequences

Svalbard

valse inria

 \times Ω

team.inria.fr/valse

