Optimal Control of Urban Human Mobility for Epidemic Mitigation

Umar NIAZI, C. CANUDAS-DE-WIT, A. KIBANGOU, P.-A. BLIMAN

October 7, 2021

Influence of mobility restrictions on Covid-19

Literature review

- Linear mobility models (Sattenspiel '95; Balcan '10; Poletto '13)
 - + capture inter-city human mobility in slower time-scales
 - cannot capture the human mobility in <u>urban environments</u>
- ► Agent-based models (Frias-Martinez '11; Pappalardo '15; Nadini '20)
 - + good for insights
 - uncertain, reproducibility not guaranteed
- ► Machine learning-based approaches (Song '20, Wan '21)
 - + easy when data is available
 - no guarantees, error-susceptibility, requires rich data

Our contribution

- Developed a model of human mobility in an <u>urban environment</u>
- ▶ Incorporated local epidemic spread process
- Devised optimal control policies for human mobility

Model

Capturing mobility patterns through gating functions

▶ Supply gating function: $\sigma_j(t) \in \{0,1\}$

$$\sigma_j(t) = \left\{ egin{array}{ll} 1, & \mbox{if } j \mbox{ is open at } t \ 0, & \mbox{otherwise} \end{array}
ight.$$

captures opening hours of \mathcal{V}_d

▶ Demand gating function: $\delta_{ij}(t) \in [0,1]$

$$\int_{t_d}^{t_d+1} \delta_{ij}(t)dt = 1$$

captures daily mobility pattern b/w i, j

Model assumptions

- constant population
- bipartite mobility network
- visitors return the same day
- mobility pattern repeats weekly

Urban human mobility model

$$\dot{N}_i = \mathsf{inflow} - \mathsf{outflow} = \sum_j [\phi_{ji} - \phi_{ij}]$$

Urban human mobility model

$$\dot{N}_i = \mathsf{inflow} - \mathsf{outflow} = \sum_j [\phi_{ji} - \phi_{ij}]$$

Urban human mobility model

$$\dot{N}_i = \mathsf{inflow} - \mathsf{outflow} = \sum_i [\phi_{ji} - \phi_{ij}]$$

Flow
$$\phi_{ij} = \min(\Delta_{ij}, \Sigma_j)$$

Demand
$$\Delta_{ij} = \delta_{ij}(t) \cdot f_{ij} \mathbb{1}_{N_i(t)>0}$$

Supply
$$\Sigma_j = rac{\sigma_j(t)}{(\sum_i f_{ij})} \mathbb{1}_{N_j(t) < u_j(t)C_j}$$

 $[\]mathbb{1}_X=1$ if X is true and $\mathbb{1}_X=0$ if X is false.

http://gtlville.inrialpes.fr/covid-19

^{*} Thanks to Ujjwal Pratap, Leo Senique, & Vadim Bertrand

Incorporating epidemic spread process

Assumption

all S_i, I_i, R_i are mobile

Local Epidemic Spread

$$\boldsymbol{\xi}_{i}(\mathbf{x}_{i}) = \begin{bmatrix} -\beta_{i} S_{i} \frac{I_{i}}{N_{i}}, & \beta_{i} S_{i} \frac{I_{i}}{N_{i}} - \gamma I_{i}, & \gamma I_{i} \end{bmatrix}^{\mathsf{T}}$$

Incorporating epidemic spread process

Assumption

all S_i, I_i, R_i are mobile

Local Epidemic Spread

$$\boldsymbol{\xi}_{i}(\mathbf{x}_{i}) = \begin{bmatrix} -\beta_{i} S_{i} \frac{I_{i}}{N_{i}}, & \beta_{i} S_{i} \frac{I_{i}}{N_{i}} - \gamma I_{i}, & \gamma I_{i} \end{bmatrix}^{\mathsf{T}}$$

Model of urban human mobility with epidemic spread

$$\dot{\mathbf{x}}_{i} = \boldsymbol{\xi}_{i}(\mathbf{x}_{i}) + \sum_{j \in \mathcal{N}_{i}} \left[\phi_{ji}(u_{j}) \frac{\mathbf{x}_{j}}{N_{j}} - \phi_{ij}(u_{j}) \frac{\mathbf{x}_{i}}{N_{i}} \right]; \quad N_{i} = S_{i} + I_{i} + R_{i}$$

$$\Rightarrow \left[\dot{\mathbf{x}} = \boldsymbol{\xi}(\mathbf{x}) + \Phi(\mathbf{x}, \mathbf{u}) \mathbf{x} \right]$$

Economic activity

$$E(t) = \sum_{j \in \mathcal{V}_d} \chi_j \frac{N_j(t)}{C_j} = \mathbf{e}^{\mathsf{T}} \mathbf{x}(t)$$

$$\chi_j, \text{ economic weight of } j \ , \quad \boxed{\mathbf{e} = [\begin{array}{cccc} \mathbf{0}_m^{\mathsf{T}} & \frac{\chi_{d_1}}{C_{d_1}} & \cdots & \frac{\chi_{d_n}}{C_{d_n}} \end{array}]^{\mathsf{T}} \otimes [\begin{array}{ccccc} 1 & 1 & 1 \end{array}]^{\mathsf{T}}}$$

Active infected cases

$$I(t) = \sum_{i \in \mathcal{V}_o \cup \mathcal{V}_d} I_i(t) = \mathbf{g}^{\mathsf{T}} \mathbf{x}(t)$$

$$\mathbf{g} = [\mathbf{1}_m^{\mathsf{T}} \ \mathbf{1}_n^{\mathsf{T}}]^{\mathsf{T}} \otimes [\mathbf{0} \ \mathbf{1} \ \mathbf{0}]^{\mathsf{T}}$$

► Infection peak

$$I_{\mathsf{peak}} = \sup_{t \in [0,T]} I(t)$$

Optimal Control for Epidemic Mitigation

Optimal capacity control

Capacity control input $u_j(t) \in [0,1]$ p.w. constant; $\mathbf{u} = [u_{d_1} \dots u_{d_n}]^{\mathsf{T}}$ Operating capacities $u_j C_j$

Optimal capacity control

Capacity control input $u_j(t) \in [0,1]$ p.w. constant; $\mathbf{u} = [u_{d_1} \dots u_{d_n}]^{\mathsf{T}}$ Operating capacities u_jC_j

OCC Problem

$$\begin{aligned} & \underset{\mathbf{u} \in \mathcal{U}}{\text{maximize}} & L(\mathbf{u}) \coloneqq \frac{1}{T} \int_0^T \mathbf{e}^\intercal \mathbf{x}(t; \mathbf{x}_0, \mathbf{u}) dt \\ & \text{subject to} & \left\{ \begin{array}{l} \dot{\mathbf{x}} = \boldsymbol{\xi}(\mathbf{x}) + \Phi(\mathbf{x}, \mathbf{u}) \mathbf{x}; & \mathbf{x}(0) = \mathbf{x}_0 \\ I_{\mathsf{peak}}(\mathbf{u}) \coloneqq \sup_{t \in [0, T]} \mathbf{g}^\intercal \mathbf{x}(t; \mathbf{x}_0, \mathbf{u}) \leq \overline{I} \end{array} \right. \end{aligned}$$

Can be solved numerically using CASADI or fmincon solver in MATLAB

Origins V_o Destinations V_d

Optimal schedule control

- ightharpoonup Fixed operating capacities, i.e., $\mathbf{u}(t) = \boldsymbol{\mu}$
- ightharpoonup Closing hours $\mathbf{s} = [s_1 \ldots s_n]^\intercal$ of destinations \mathcal{V}_d

Optimal schedule control

- Fixed operating capacities, i.e., $\mathbf{u}(t) = \boldsymbol{\mu}$
- ightharpoonup Closing hours $\mathbf{s} = [s_1 \dots s_n]^{\mathsf{T}}$ of destinations \mathcal{V}_d

OSC Problem

Let $\mathbf{u}(t) = 0.75 \, \mathbf{1}_3$, i.e., 25% reduction in the capacities

	Industries	Schools	Markets
Closing hours	02:32 pm	01:45 pm	04:06 pm

Conclusions

Conclusions & Prospects

- ▶ Model of urban human mobility with local epidemic spread process
- Optimal mobility control for epidemic mitigation
 - Optimal capacity control
 - Optimal schedule control
- Prospects
 - ► Online demonstrator for the network of Grenoble
 - Model predictive control framework
 - ► Theoretic guarantees for optimal control problems

This work was supported by

1. Scale-FreeBack http://scale-freeback.eu/ (ERC AdG)

2. Healthy-Mobility (Inria's Mission Covid-19)

Contact: muhammad-umar-b.niazi@inria.fr