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• The current outbreak of Covid-19 led to renewed interest in
modelling/analysis of “social distancing” strategies to
control infectious diseases.

• This refers to attempts to directly reduce the infecting
contacts within the population (in contrast to vaccination or
quarantine). In absence of vaccine or therapy, such strategies
are probably the only mid-term option.

• We study here, on the SIR model, optimal use of
confinement to minimize the total number of infected
along the outbreak.
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Stationary SIR model

Optimal confinement on [0,T ]

Optimal confinement on interval of duration T
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We provide here the main properties of the classical SIR model
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SIR model

S , I , R: proportions of susceptible, infected and removed
individuals.

Ṡ = −βSI , S(0) = S0, (1a)

İ = βSI − γI , I (0) = I0, (1b)

Ṙ = γI , R(0) = R0. (1c)

with S0 + I0 + R0 = 1.

β, γ > 0: infection, recovery rates
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Analysis of the dynamical behaviour

• All state variables remain nonnegative

• Ṡ = −βSI 6 0, so there exists lim
t→+∞

S(t) := S∞ ∈ [0,S0]

• Ṡ + İ = −γI 6 0, so that lim
t→+∞

(S + I )(t) exists, and lim
t→+∞

I (t) too

• Necessarily
lim

t→+∞
I (t) = 0

(otherwise lim
t→+∞

S(t) = 0, and lim
t→+∞

I (t) = 0 too : contradiction)

• Necessarily
∫ +∞

0
I (t) · dt = − 1

γ

∫ +∞
0

(Ṡ(t) + İ (t)) · dt < 1
γ , so that

S∞ = e−β
∫ +∞

0
I (t)·dtS0, and S∞ ∈ (0,S0)
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Basic reproduction number

As İ = (βS − γ)I and S 6 1, no outbreak may occur if

R0 :=
β

γ
6 1

This is the so-called basic reproduction number.
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Herd immunity
If R0 > 1, as İ = (βS − γ)I , the outbreak stops spreading
(i.e. İ 6 0) if

S(t) 6 Sherd :=
γ

β
=

1

R0

This is the so-called herd immunity threshold.

Proposition 1 (Equilibrium stability)

• The set of equilibrium points of (1) is {(Sequi, 0) : Sequi > 0}
• (Sequi, 0) is unstable iff

R0Sequi > 1, i.e. Sequi > Sherd
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Epidemic final size
One has d

dt
(S + I ) = −γI =

γ

β

Ṡ

S

so that
t 7→ S(t) + I (t)− Sherd lnS(t) is constant

In particular,

S∞ − Sherd lnS∞ = S0 + I0 − Sherd lnS0 (2)

S0 − S∞ is the epidemic final size

Theorem 2 (Final size equation)

S∞ is the unique root of (2) in the interval [0,Sherd]
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Numerical values of Sherd and S∞ for various R0

The outbreak does not stop when immunity is reached!

R0 1.5 2 2.5 2.9 3 3.5

Sherd 0.67 0.50 0.40 0.34 0.33 0.29

S∞ (for S0 ' 1) 0.42 0.20 0.11 0.067 0.059 0.034
Sherd − S∞

1− S∞
43% 37% 33% 30% 29% 27%

Sherd−S∞
1−S∞

: proportion of susceptible infected after passing Sherd.

How can one minimize S∞? Or equivalently:

How best can one stop close to herd immunity?
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Setting

For initial data (S , I )(0) = (S0, I0) > 0, S0 + I0 6 1, we consider the
controlled SIR model

Ṡ(t) = −u(t)βS(t)I (t), t > 0 (3a)

İ (t) = u(t)βS(t)I (t)− γI (t), t > 0 (3b)

and define the admissible control set Uα,T ,T ′ , 0 6 T < T ′, α ∈ [0, 1)

Uα,T ,T ′ := {u ∈ L∞, α 6 u(t) 6 1 if t ∈ [T ,T ′], u(t) = 1 otherwise}.

α is the maximal lockdown intensity
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A key property of the final size S∞(u)

For any admissible input u, write S∞(u) the corresponding final
size.

Lemma 3

• For any u ∈ Uα,T ,T ′ , S∞(u) is the unique S∞ ∈ (0,Sherd) s.t.

S∞ − Sherd lnS∞ = S(T ′) + I (T ′)− Sherd lnS(T ′)

• For any V ⊂ Uα,T ,T ′ , maximizing S∞(u) over V amounts to
minimizing S(T ′) + I (T ′)− Sherd lnS(T ′) among the solutions
(S(u), I (u)) of (3), u ∈ V
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Stationary SIR model

Optimal confinement on [0,T ]

Optimal confinement on interval of duration T
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We study here how to minimize the total number of infected
through application of lockdown during interval [0,T ], with
maximal intensity α
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Optimal immunity control (1/2)

Find sup
u∈Uα,0,T

S∞(u) := S∗∞ (Pα,T )

For any T0 ∈ [0,T ], define uT0 ∈ Uα,0,T by

uT0 = 1[0,T0] + α1[T0,T ] + 1[T ,+∞) (4)

and (ST0 , IT0) the solution of (3) with u = uT0 .

Theorem 4 (Optimal control is unique and bang-bang)

• Problem (Pα,T ) admits a unique solution u∗.

• There exists a unique T ∗0 ∈ [0,T ) such that u∗ = uT∗0 , so
that (Pα,T ) is equivalent to the 1D optimization problem

sup
T0∈[0,T )

S∞(uT0) (P̃α,T )
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Optimal immunity control (2/2)
For T0 ∈ [0,T ], and (ST0 , IT0) solution to (3) with u = uT0 , let

ψ(T0) := (1− α)βIT0(T )

∫ T

T0

ST0(t)

IT0(t)
dt − 1 (5)

Theorem 5 (Characterization of T ∗0 )

Let uT∗0 be the optimal control, then

• if ψ(0) 6 0, then T ∗0 = 0.

• if ψ(0) > 0, then T ∗0 is the unique T0 ∈ (0,T ) s.t.
ψ(T0) = 0.

If T ∗0 > 0, then ST∗0 (T ∗0 ) > Sherd.
If α = 0, T ∗0 > 0 iff T > 1

γ ln S0
S0−Sherd , and then T ∗0 is the

unique T0 s.t. ST0(T0) = Sherd
1−eγ(T0−T ) .

17 / 37



SIR model Optimal confinement on [0,T ] Optimal confinement of duration T

Optimal immunity control (2/2)
For T0 ∈ [0,T ], and (ST0 , IT0) solution to (3) with u = uT0 , let

ψ(T0) := (1− α)βIT0(T )

∫ T

T0

ST0(t)

IT0(t)
dt − 1 (5)

Theorem 5 (Characterization of T ∗0 )

Let uT∗0 be the optimal control, then

• if ψ(0) 6 0, then T ∗0 = 0.

• if ψ(0) > 0, then T ∗0 is the unique T0 ∈ (0,T ) s.t.
ψ(T0) = 0.

If T ∗0 > 0, then ST∗0 (T ∗0 ) > Sherd.
If α = 0, T ∗0 > 0 iff T > 1

γ ln S0
S0−Sherd , and then T ∗0 is the

unique T0 s.t. ST0(T0) = Sherd
1−eγ(T0−T ) .

17 / 37



SIR model Optimal confinement on [0,T ] Optimal confinement of duration T

Hints of proof

1. Existence of optimal control: by studying minimizing sequence

2. Optimality conditions: Pontryagin’s maximum principle yields
optimum at some u∗ = uT0 , T0 ∈ [0,T ) (bang-bang).

3. Optimality conditions in terms of T0: ψ defined in (5) is such that

∂S∞(uT0 )

∂T0
∝ ψ(T0),

so that S∞(uT0 ) reaches optimum in (0,T ) iff ψ(T0) = 0.

4. ψ is decreasing, thus admits at most one zero: uniqueness.
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Properties of the value function

Theorem 6
S∗∞ = sup{S∞(u) : u ∈ Uα,0,T} is non-increasing wrt α and
non-decreasing wrt T .

Theorem 7 (How close from herd immunity can we stop?)

α :=
Sherd

S0 + I0 − Sherd
(lnS0 − lnSherd) ∈ (0, 1) (6)

• If 0 6 α 6 α then ∀ε > 0,∃T > 0, (1− ε)Sherd 6 S∗∞ < Sherd

• If α < α < 1 then ∀T > 0, S∗∞ < S∞(α1) < Sherd
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Numerical illustrations – 1 (1/5)

Parameter Name Value
β Infection rate 0.29 day−1

γ Recovery rate 0.1 day−1

αlock Lockdown level (France, 03-05/2020) 0.231
S0 Initial proportion of susceptible 1− I0

I0 Initial proportion of infected (March 8th) 1× 103

6.7× 107 ≈ 1.49× 10−5

R0 Initial proportion of removed 0

Table: Parameters used in simulation

One has
R0 ≈ 2.9, Sherd ≈ 0.34,

and with initial conditions (S0, I0), the critical lockdown
intensity is

α ≈ 0.56 20 / 37
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Numerical illustrations – 1 (2/5)
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Figure: Optimal solution of (Pα,T ) for α = 0.0, T = 100 days, shown on
[0, 200]. Here S∗∞ = 0.282 < 0.34 = Sherd, T ∗0 = 61.9 days.
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Numerical illustrations – 1 (3/5)
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Figure: Optimal solution of (Pα,T ) for α = αlock, T = 100 days shown on
[0, 200]. Here S∗∞ = 0.259 < 0.34 = Sherd, T ∗0 = 59.2 days.
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Numerical illustrations – 1 (4/5)
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Figure: Graph of S∗∞ wrt T for α ∈ {0, αlock, 0.7, 0.8} (left), and wrt α
for T ∈ {100, 200, 400} (right).
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Numerical illustrations – 1 (5/5)
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Figure: Graph of T ∗0 wrt T for α ∈ {0.0, αlock, 0.7, 0.8} (left), and wrt α
for T ∈ {100, 200, 400} (right).
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Stationary SIR model

Optimal confinement on [0,T ]

Optimal confinement on interval of duration T
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Distancing enforcement cannot last for long time. But there is no
reason why it should be restricted to start at a given date —
typically “right now”.

Based on the previous results, we study now how to minimize the
total number of infected through application of lockdown of
maximal intensity α during maximal time duration T , but
without prescribing the onset of this measure
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Optimal immunity control (1/2)

Find sup
T0>0

sup
u∈Uα,T0,T0+T

S∞(u) := S∗∗∞ (P ′α,T )

For any T0 > 0, define u′T0
∈ Uα,T0,T0+T by

u′T0
= 1[0,T0] + α1[T0,T0+T ] + 1[T0+T ,+∞), (7)

and (ST0 , IT0) the solution of (3) with u = u′T0
.

Theorem 8 (Optimal control is unique and bang-bang)

• Problem (P ′α,T ) admits a unique solution u∗∗.

• There exists a unique T ∗∗0 > 0 such that u∗∗ = u′T∗∗0
, so

that (P ′α,T ) is equivalent to the 1D optimization problem

sup
T0>0

S∞(u′T0
) (P̃ ′α,T )
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Optimal immunity control (2/2)

For T0 > 0, and (ST0 , IT0) solution to (3) with u = u′T0
, let

ψ′(T0) :=
IT0(T0 + T )

IT0(T0)
+ (1− α)γ

∫ T0+T

T0

IT0(T0 + T )

IT0(t)
dt − 1 (8)

Theorem 9 (Characterization of T ∗∗0 )

Let u′T∗∗0
be the optimal control, then

• if ψ′(0) 6 0, then T ∗∗0 = 0;

• if ψ′(0) > 0, then T ∗∗0 is the unique T0 > 0 s.t.
ψ′(T0) = 0.

Moreover, if T ∗∗0 > 0, then ST∗∗0 (T ∗∗0 ) > Sherd, with equality
iff α = 0.
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Hints of proof

1. Semigroup property: ∀u ∈ Uα,T0,T0+T , S∞(u) = S∞(v) with:

◦ v ∈ Uα,0,T , v(·) := u(·+ T0)
◦ initial condition (S(u)(T0), I (u)(T0))

This allows to use (Pα,T ), and thus (P̃α,T ), to solve (P ′α,T ).

2. Optimality conditions: using this reduction yields
S∗∗∞ = sup{S∞(uT0,T0+τ ) : T0 > 0, τ ∈ [0,T ]}

where uT0,T0+τ ≡ α on [T0,T0 + τ ], 1 otherwise.

3. 2D→ 1D: one is led to (P̃ ′α,T ) by showing that
sup{S∞(uT0,T0+τ ) : T0 > 0, τ ∈ [0,T ]} = sup{S∞(u′T0

) : T0 > 0}
4. Optimality conditions in terms of T0: S∞(u′T0

) reaches optimum
in (0,+∞) iff ψ′(T0) = 0 because

∂S∞(u′T0
)

∂T0
∝ ψ′(T0)

5. ψ′ is decreasing, thus admits at most one zero: uniqueness.
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Properties of the value function

Theorem 10
S∗∗∞ = sup{S∞(u) : u ∈ Uα,T0,T0+T ,T0 > 0} is increasing wrt
T > 0 and decreasing wrt α ∈ [0, 1).

Theorem 11 (How close from herd immunity can we stop?)

• If 0 6 α 6 α then lim
T→+∞

S∗∗∞ = Sherd

• If α < α < 1 then lim
T→+∞

S∗∗∞ = S∞(α1) < Sherd
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Numerical illustrations – 2 (1/5)

T T ∗∗0 S∗∗∞ S∗∗∞/Sherd max
t>0

I (t)

No lockdown — 0.0668 0.194 0.288

30 days 74.3 days (May 21st) 0.255 0.739 0.288

60 days 74.3 days (May 21st) 0.323 0.937 0.288

90 days 74.3 days (May 21st) 0.340 0.985 0.288

Table: Lockdown intensity α = 0, starting dates computed from March 8th.

T T ∗∗0 S∗∗∞ S∗∗∞/Sherd max
t>0

I (t)

No lockdown — 0.0668 0.194 0.288

30 days 72.1 days (May 19th) 0.222 0.644 0.282

60 days 71.5 days (May 18th) 0.302 0.875 0.278

90 days 71.3 days (May 18th) 0.331 0.959 0.277

Table: Lockdown intensity α = αlock ≈ 0.231.
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Numerical illustrations – 2 (2/5)
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Figure: Graph of S∗∗∞ /Sherd for Problem (P ′α,T ) as a function of T , for
α ∈ {0.0 (–), 0.2 (–), 0.4 (–), 0.6 (–), 0.8 (–), α (- -)} and
R0 ∈ {2, 6}.
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Numerical illustrations – 2 (3/5)
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Figure: Graph of S∗∗∞ /Sherd for Problem (P ′α,T ) as a function of α, for
T ∈ {30 (–), 60 (–), 120 (–), 240 (–)} and R0 ∈ {2, 6}.
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Numerical illustrations – 2 (4/5)
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Figure: Graph of T ∗∗0 for Problem (P ′α,T ) as a function of T , for α ∈ {0.0
(–), 0.2 (–), 0.4 (–), 0.6 (–), 0.8 (–), α (- -)} and R0 ∈ {2, 6}.
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Numerical illustrations – 2 (5/5)
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Figure: Graph of T ∗∗0 for Problem (P ′α,T ) as a function of α, for T ∈ {30
(–), 60 (–), 120 (–), 240 (–)} and R0 ∈ {2, 6}.
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Conclusion – “Don’t try this at home!”

• Best policy achieved through lockdown of possibly
time-varying, but limited, intensity on time interval of
restricted duration has been studied. It is unique, and reached by
enforcing the strictest distancing during the whole time
interval.

• Optimal control is state feedback (via the ψ,ψ′ conditions)

• Optimal control does not begin from the earliest possible time —
only an apparent paradox.

• Many features important in effective handling of human
epidemic have been ignored: unmodeled sources of heterogeneity
in disease spread, limited hospital capacity, imprecise
epidemiological data, partial respect of the enforcement measures. . .

• But the strategy consisting in reaching herd immunity without
considering other factors appears unsustainable (peak of
infected cases almost equal to 30% of the population !)
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Thank you for your attention !

For more details (and references!):

◦ Bliman, P.-A., Duprez, M., Privat, Y. & Vauchelet, N. (2021) “Optimal
immunity control by social distancing for the SIR epidemic model”,
Journal of Optimization Theory and Applications v. 189, 408–436

◦ Bliman, P.-A. & Duprez, M. (2021) “How best can finite-time social
distancing reduce epidemic final size?”, Journal of Theoretical Biology
511, 110557

◦ pierre-alexandre.bliman@inria.fr
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