Séminaire Valda : Anantha Padmanabha

20 mai 2022, 10:30-11:30.

ENS S16.

Algorithm for consistent query answering under primary key constraints

Databases often have constraints. One of the basic constraints is the « primary key constraint » which states there can be at most one tuple for every primary key. However, these days it is common to have databases that violate such constraints which is called an « inconsistent database ». In particular, if a database violates primary key constraint, it will contain more than one tuple for the same primary key. In this setting, the notion of a repair is defined by picking exactly one tuple for each primary key (maximal consistent subset of the database). A Boolean conjunctive query q, is certain for an inconsistent database D if q evaluates to true over all repairs of D. In this context, we have a dichotomy conjecture that states that for a fixed boolean conjunctive query q, testing whether q is certain for an input database D is either polynomial time or coNP-complete.

The conjecture is open in general, but has been verified for self-join-free and path queries. However, the polynomial time algorithms known in the literature are complex and use different strategies in the two cases.  We propose a simple inflationary fixpoint algorithm for consistent query answering which  correctly computes certain answers when the query q falls in the polynomial time cases for self-join-free queries and path queries.  This raises a natural question, whether this algorithm works for all polynomial time cases. We answer this negatively and show that there are polynomial time certain queries (with self-joins) which cannot be computed by such an algorithm.

Les commentaires sont clos.