Analysis of massive 3D data

Florent Lafarge Inria Sophia Antipolis - Mediterranee

Materials available at https://team.inria.fr/titane/teaching/

Contents

- Types of 3D data
- Local analysis of 3D data
- Scene classification

Types of 3D data

- Point cloud
- Surface mesh

Laser scanning

Car-based Laser

Airborne Lidar

Ínría

Multi-View Stereo (MVS)

Inría

RGB-D sensors

(nría_

Is a point just its spatial coordinates x-y-z ?

Not necessarily: additionnal attributes can exist

Is a point just its spatial coordinates x-y-z ?

- Not necessarily: additionnal attributes can exist
- For each point :
 - Normal
 - Color
 - Confidence (MVS)
 - Camera index (MVS)

nnin

Defects in the point sets

- noise
- outliers
- heterogeneous sampling
- missing data

Inría

Inaccuracy

- acquisition system
- registration

Outliers

 Typical problem from multi-view stereo

Heterogeneous sampling

Heterogeneous sampling

Missing data

3D data as a surface mesh

the most common is the triangular mesh

Properties of surfaces

Manifold / Non-manifold

Properties of surfaces

- Manifold / Non-manifold
- Watertight / with boundary

Innia

Properties of surfaces

- Manifold / Non-manifold
- Watertight / with boundary

Smooth/piecewise smooth/primitive-based

- How to store geometry and connectivity?
- Compact storage (File formats)
- Efficient algorithms on meshes
 - Identify time-critical operations
 - All vertices/edges of a face
 - All incident vertices/edges/faces of a vertex

vertex

facet

edge

- What should be stored?
 - Geometry: 3D coordinates
 - Attributes
 - e.g. normal, color, texture coordinate
 - Per vertex, per face, per edge
 - Connectivity: What is adjacent to what

- What should it support?
 - Rendering
 - Queries
 - What are the vertices of face #3?
 - Is vertex #6 adjacent to vertex #12?
 - Which faces are adjacent to face #7?
 - Modifications
 - Remove/add a vertex/face, vertex split..

- How good is a data structure?
 - Time to construct (preprocessing)
 - Time to answer a query
 - Time to perform an operation

nnia

Facet set (STL)

- Face:
 - 3 positions

- 9 float / facets
- no connectivity!

								face	
Triangles									
x_{11}	y 11	\mathbf{Z}_{11}	X 12	Y 12	\mathbf{Z}_{12}	X 13	Y 13	Z 13	

X₂₂ Y₂₂ Z₂₂

 X_{F2} Y_{F2} Z_{F2}

X21 Y21 Z21

 \mathbf{X}_{F1} \mathbf{Y}_{F1} \mathbf{Z}_{F1}

edge)

vertex

Shared vertex (PLY,OBJ,OFF)

- Indexed Face List
 - Vertex: position
 - Face: vertex indices

3 float/vertex + 3 int/facet

no neighborhood info

Vertices							
\mathbf{x}_1	y 1	z_1					
•••							
$\mathbf{x}_{\mathbf{v}}$	Уv	$\mathbf{z}_{\mathbf{v}}$					

facet

vertex

edge

Halfedge-based connectivity

- Vertex:
 - position
 - 1 halfedge
- Halfedge:
 - 1 vertex
 - 1 facet
 - 1,2 or 3 halfedges
- Facet
 - 1 halfedge

1. Start at vertex

- 1. Start at vertex
- 2. Outgoing halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite

Innía

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite
- 6. Next
- 7. ...

Halfedge-based libraries

- CGAL
 - www.cgal.org
 - Computational geometry
 - Free for non-commercial use
- OpenMesh
 - www.openmesh.org
 - Mesh processing
 - Free, LGPL licence

Local analysis of 3D data

- Geometric attributes
- Advanced 3D descriptors

Distance and Geodesic distance

- Distance and Geodesic distance
- Planarity, normal direction

- Distance and Geodesic distance
- Planarity, normal direction
- Smoothness, curvature

- Distance and Geodesic distance
- Planarity, normal direction
- Smoothness, curvature
- Distance to complex geometric primitives

Innia

- Distance and Geodesic distance
- Planarity, normal direction
- Smoothness, curvature
- Distance to complex geometric primitives
- Symmetry

- Distance and Geodesic distance
- Planarity, normal direction
- Smoothness, curvature
- Distance to complex geometric primitives
- Symmetry
- Medial Axis, Shape diameter

- Distance and Geodesic distance
- Planarity, normal direction
- Smoothness, curvature

- Distance to complex geometric primitives
- Symmetry
- Medial Axis, Shape diameter
- Texture
- .

3D descriptors

(a) SI

(c) USC

(d) TriS

(h) PFH

Scene classification

- Unsupervised (MRF)
- Machine learning (Random Forest)
- Deep learning (PointNet)

Markov Random Fields (MRF)

set of random variables having a Markov property described by an undirected graph

Let V be the set of nodes in the graph

Card(V) = number of random variables in the MRF

nnin

in 1D (Markov chain)

 $\Pr(X_{n+1} = x | X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \Pr(X_{n+1} = x | X_n = x_n).$

n usually corresponds to time

in 2D or on a manifold in 3D (Markov field)

 $P[X_k | X - {Xk}] = P[X_k | (X_{n(k)})]$ with n(k) neighbors of k

in 2D or on a manifold in 3D (Markov field)

 $P[X_k | X - {Xk}] = P[X_k | (X_{n(k)})]$ with n(k) neighbors of k

Notion of neighborhood

 $\mathcal{N}\text{=}\left\{n(i) \ \text{/} i \in V \right\}$ is a neighborhood system if

• (a) i ∉ n(i)

• (b)
$$i \in n(j) \Leftrightarrow j \in n(i)$$

• a MRF is always associated to a neighborhood system defining the dependency between graph nodes

MRF as an energy

- Gibbs energy (Hammersley-Clifford theorem)
- Let X be a MRF so that for all $x \in \Omega$, P(X=x)>0, Then P(X) is a Gibbs distribution of the form

$$P(X=x)=exp - U(x)$$

- U is called a Gibbs energy
- $Z = \sum_{X \in \Omega} \exp -U(X)$

- Why is the markovian property important ?
 - graph with 1M nodes
 - if each node is adjacent to every other nodes:
 1M*(999,999)/2 edges ~ 500 G edges
 - each random variable cannot be dependent to all the other ones

⇒complexity needs to be reduced by spatial considerations

Markov Random Fields for images

two common graphs

nodes = pixel centers edges = adjacent pixels (4-connexity)

nodes = pixel corners edges = pixel borders

Markov Random Fields for meshes

- Graph nodes = vertices & graph edges = edges
- Graph nodes = facets & graph edges = edges
- Graph nodes = edges & graph edges = facets

Bayesian formulation

Let y, the data (attributes) x, the label

we want to model the probability of having x knowing y

$$\Pr(X = x \ / \ Y = y) = \frac{\Pr(Y = y \ / \ X = x) \ . \ \Pr(X = x)}{\Pr(Y = y)} \qquad \text{Bayes law}$$

Standard assumptions

conditional independence of the observation

$$P(Y=y|X=x) = \prod_{i \in V} P(y_i|x_i)$$

X is an MRF

From probability to energy

data term : local dependency hypothesis (l=x)
regularization : soft constraints

$$U(l) = \sum_{i \in V} D_i(l_i) + \beta \sum_{\{i,j\} \in E} V_{ij}(l_i, l_j)$$

Data term

= -log (likelihhood) when Bayesian **Regularisation term**

- log (pairwise interaction prior) when Bayesian

Optimal configuration

We search for the label configuration x that maximizes P(X=x | Y=y)

$$\Rightarrow x^* = \arg \max_{x} \Pr(X=x | Y=y)$$
$$= \arg \min_{x} U(x)$$

exercise: binary segmentation

Graph structure Graph nodes = facets Graph edges = common edges

Attributes on facet: [0,1] (y)

labels: {white, black} (l)

Energy:
$$U(l) = \sum_{i \in V} D_i(l_i) + \beta \sum_{\{i,j\} \in E} V_{ij}(l_i, l_j)$$

with
$$D_i(l_i) = \begin{cases} y_i & \text{if } l_i = \text{'white'} \\ 1 - y_i & \text{otherwise} \end{cases}$$

 $V_{i,j}(l_i, l_j) = \begin{cases} 0 & \text{if } l_i = l_j \\ 1 & \text{otherwise} \end{cases}$

exercise: binary segmentation

Finding the optimal configuration of labels

Graph-cut based approches fast but restrictions on energy formulation

Monte Carlo sampling slow but no restriction

Example: mesh segmentation with principal curvature attributes & soft geometric constraints

Multi-label energy model of the form

$$U(l) = \sum_{i \in V} D_i(l_i) + \beta \sum_{\{i,j\} \in E} V_{ij}(l_i, l_j)$$

with V, set of vertices of the input mesh E, set of edges in the mesh

> l_i , the label of the vertex i among : planar (1), developable convex (2), developable concave (3) and non developable (4)

Data term

$$D_i(l_i) = 1 - Pr(l_i | k_{min}^{(i)}, k_{max}^{(i)})$$

with

$$Pr(l_{i}|k_{min}^{(i)}, k_{max}^{(i)}) = \begin{cases} G_{\sigma}(k_{min}^{(i)})G_{\sigma}(k_{max}^{(i)}) & \text{if } l_{i} = 1 \\ G_{\sigma}(k_{min}^{(i)})(1 - G_{\sigma}(k_{max}^{(i)})) & \text{if } l_{i} = 2 \\ (1 - G_{\sigma}(k_{min}^{(i)}))G_{\sigma}(k_{max}^{(i)}) & \text{if } l_{i} = 3 \\ (1 - G_{\sigma}(k_{min}^{(i)}))(1 - G_{\sigma}(k_{max}^{(i)})) & \text{if } l_{i} = 4 \end{cases}$$

$$G_{\sigma}(k) = \exp(-k^2/2\sigma^2)$$

Data term

 $r(l_i | k_{min}^{(i)}, k_{max}^{(i)})$

if
$$l_i = 1$$

if $l_i = 2$
if $l_i = 3$
)) if $l_i = 4$

Soft constraints

Label smoothness Edge preservation

$$V_{ij}(l_i, l_j) = \begin{cases} 1 & \text{if } l_i \neq l_j \\ \min(1, a || \mathbf{W_i} - \mathbf{W_j} ||_2) & \text{otherwise} \end{cases}$$

with
$$\mathbf{W} = \begin{pmatrix} k_{min} \cdot \mathbf{w_{min}} \\ k_{max} \cdot \mathbf{w_{max}} \end{pmatrix}$$

Classification by Machine learning (Random Forest)

Decision tress involve greedy, recursive partitioning

Simple dataset with two predictors

Greedy, recursive partitioning along TI and PE

ΤI

1.0

2.0

•••

4.5

Example with cgal

Ínría

Classification by Deep learning (PointNet)

PointNet

End-to-end learning for irregular point data

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. (CVPR'17)

PointNet

End-to-end learning for irregular point data Unified framework for various tasks

Innía

PointNet: challenges

The model has to respect key properties of point clouds:

Point Permutation Invariance

Point cloud is a set of unordered points

Spatial Transformation Invariance

Point cloud rigid motions should not alter classification results

naía

Point cloud: set of N **unordered** points, each represented by a D dim vector

Model needs to be invariant to N! permutations

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), \ x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

How can we construct a universal family of symmetric functions by neural networks?

Simplest form: directly aggregate all points with a symmetric operator gJust discovers simple extreme/aggregate properties of the geometry

Embed points to a high-dim space before aggregation. Aggregation in the (redundant) high-dim space encodes more interesting properties of the geometry.

$$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$$
 is symmetric if g is symmetric

Second property: spatial transformation invariance

Idea: Data dependent transformation for automatic alignment

Second property: spatial transformation invariance

Idea: Data dependent transformation for automatic alignment The transformation is just matrix multiplication!

PointNet architecture for classification tasks

Results on indoor scene classification

Inría

Other deep learning architectures for point cloud classification

- VoxNet (2015)
- PointNet++ (2017)
- Superpoint graph (2018)
- DG-CNN (2019)
- Point Cloud Transformer (2021)

VoxNet (Maturana et al, VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. In IROS, 2015)

PointNet++ (Qi et al, PointNet++: Deep hierarchical feature learning on point sets in a metric space. In NIPS, 2017)

Superpoint graph (Landrieu et al, Large-scale point cloud semantic segmentation with superpoint graphs. In CVPR, 2018)

DG-CNN (Wang et al., Dynamic graph cnn for learning on point clouds. TOG, 2019)

spatial transform

