
Curves and surfaces

Florent Lafarge

Inria Sophia Antipolis – Mediterranee



Parametric Surfaces

 Continuous surface

 Normal vector

 Assume regular parameterization

Parametric surfaces



Angles on Surface

 Curve [u(t), v(t)] in uv-plane defines curve on the 

surface x(u,v)

 Two curves c1 and c2 intersecting at p

 Angle of intersection?

 Two tangents t1 and t2

 Compute inner product

Angles on surface

Parametric surfaces



Angles on Surface

 Curve [u(t), v(t)] in uv-plane defines curve on the 

surface x(u,v)

 Two curves c1 and c2 intersecting at p

Angles on surface

Parametric surfaces



First Fundamental Form

 First fundamental form 

 Defines inner product on tangent space

First fundamental form

Parametric surfaces



First Fundamental Form

First fundamental form

Parametric surfaces



Parametric surfaces: exercices

 Sphere centrée en (0,0,0) de rayon 1

 Parametrage de la surface

 Longueur à l’équateur

 Aire de la sphere



Sphere Example

 Spherical parameterization

 Tangent vectors

 First fundamental form

Sphere example

Parametric surfaces: exercices



Sphere Example

 Length of equator x(t, π / 2)

Sphere example

Parametric surfaces: exercices



Sphere Example

 Area of a sphere

Sphere example

Parametric surfaces: exercices



Parametric surfaces: exercices

 cylindre centrée en (0,0,0), de normal (0,0,1), de 

rayon 1 et de hauteur 2h

 Parametrage de la surface

 Longueur à l’équateur

 Aire du cylindre



Parametric surfaces: exercices

 tore centrée en (0,0,0), de normal (0,0,1), de grand 

rayon 10 et de petit rayon 1 

 Parametrage de la surface

 Aire du tore



Parametric surfaces: exercices



 Tangent vector t...

Normal Curvature

Normal curvature

Parametric surfaces



 .. defines intersection plane, yielding curve c(t)

Normal Curvature

Normal curvature

Parametric surfaces



Normal Curvature

 Normal curvature κn(t) is defined as curvature of the 

normal curve c(t) at point p = x(u, v).

 With second fundamental form

 normal curvature can be computed as

Normal curvature

Parametric surfaces



Surface Curvature(s)

 Principal curvatures

 Maximum curvature                                                       

 Minimum curvature

 Euler theorem: 

 Corresponding principal directions e1, e2 are 

orthogonal

Surface curvatures

Parametric surfaces



Surface Curvature(s)

 Principal curvatures

 Maximum curvature                                                       

 Minimum curvature

 Euler theorem: 

 Corresponding principal directions e1, e2 are orthogonal

 Special curvatures

 Mean curvature

 Gaussian curvature

Surface curvatures

Parametric surfaces



Curvature of Surfaces

 Mean curvature

 H = 0 everywhere → minimal surface

soap films

Curvature of surfaces

Parametric surfaces



Curvature of Surfaces

 Gaussian curvature

 K = 0 everywhere → developable surface

Disney Concert Hall, L.A.

Architects: Gehry Partners

Timber Fabric

IBOIS, EPFL

Curvature of surfaces

Parametric surfaces



 A point x on the surface is called

 elliptic, if K > 0

 hyperbolic, if K < 0

 parabolic, if K = 0

 umbilic, if 

Classification

Classification

Parametric surfaces



 A point x on the surface is called

Classification

Classification

Parametric surfaces



Parametric surfaces: exercices



 largest number of nonintersecting simple closed curves 

that can be drawn on the surface without separating it

 It is equal to the number of holes in a surface

Genus of a surface

g=0 g=1 g=3

//upload.wikimedia.org/wikipedia/commons/7/70/Sphere_filled_blue.svg
//upload.wikimedia.org/wikipedia/commons/9/9f/Torus_illustration.png
//upload.wikimedia.org/wikipedia/commons/f/f0/Triple_torus_illustration.png


Euler characteristic

V – E + F = 2 V – E + F = 0



 For any closed manifold surface with Euler 

characteristic χ = 2-2g

Gauss-Bonnet Theorem

Gauss-Bonnet theorem



 Sphere

 when sphere is deformed new positive and negative 

curvature cancel out!

Gauss-Bonnet Theorem

Gauss-Bonnet theorem



 Gradient

 points in the direction of steepest ascent

Differential Operators

Differential operators



 Divergence

Differential Operators

Differential operators



Laplace Operator

Cartesian
coordinatesdivergence

operator

gradient
operatorLaplace

operator

function in 
Euclidean space

2nd partial
derivatives

Laplace operator



Laplace-Beltrami Operator

 Extension of Laplace to functions on manifolds

divergence
operator

gradient
operatorLaplace-

Beltrami

function on
manifold 

Laplace-Beltramy operator



Laplace-Beltrami Operator

surface
normal

mean
curvature

divergence
operator

gradient
operatorLaplace-

Beltrami

coordinate
function 

 Extension of Laplace to functions on manifolds

Laplace-Beltramy operator
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 Differential Geometry

 Discrete Differential Geometry

 Mesh Quality Measures



Discrete Curvatures

 How to discretize curvatures on a mesh?

 Approximate differential properties at point x as 

average over local neighborhood A(x)

 x is a mesh vertex

 A(x) within one-ring neighborhood

x

A(x)

Discrete curvatures



Discrete Curvatures

 How to discretize curvatures on a mesh?

 Approximate differential properties at point x as 

average over local neighborhood A(x)

v

A(v)

Discrete curvatures



Discrete Curvatures

 Which curvatures to discretize?

 Discretize Laplace-Beltrami operator

 Laplace-Beltrami gives us mean curvature H

 Discretize Gaussian curvature K

 From H and K we can compute κ1 and κ2

Discrete curvatures



 Extend finite differences to meshes?

 What weights per vertex / edge?

Laplace Operator on Meshes?

½ ½-1

1D grid

¼ ¼

¼

¼

-1

2D grid

? ?

?

??

? ?

2D/3D mesh

Laplace operator on mesh?



Uniform Laplace

 Uniform discretization

Uniform Laplace



Uniform Laplace

 Uniform discretization

 Properties

 depends only on connectivity

 simple and efficient

 bad approximation for irregular triangulations

Uniform Laplace



Discrete Laplace-Beltrami

 Cotangent discretization

for derivation, check out: 

http://brickisland.net/cs177/

Discrete Laplace-Beltrami



Barycentric Cells

 Connect edge midpoints and triangle barycenters

 Simple to compute

 Area is 1/3 of triangle areas

 Slightly wrong for obtuse triangles

Barycentric cells



Mixed Cells

 Connect edge midpoints and 

 Circumcenters for non-obtuse triangles

 Midpoint of opposite edge for obtuse triangles

 Better approximation, more complex to compute...

Mixed cells



Discrete Laplace-Beltrami

 Cotangent discretization

 Problems

 weights can become negative (when?)

 depends on triangulation

 Still the most widely used discretization

Discrete Laplace-Beltrami



Discrete Curvatures

 Mean curvature (absolute value)

 Gaussian curvature

 Principal curvatures

Discrete curvatures



Links

 P. Alliez: Estimating 

Curvature Tensors on Triangle 

Meshes (source code)

 http://www-

sop.inria.fr/geometrica/team/P

ierre.Alliez/demos/curvature/

 CGAL package

principal directions

http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/demos/curvature/
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Mesh Quality

 Visual inspection of “sensitive” attributes

 Specular shading

Mesh quality
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Mesh Quality

 Visual inspection of “sensitive” attributes

 Specular shading

 Reflection lines

 differentiability one order lower than surface

 can be efficiently computed using graphics 

hardware

Mesh quality



Mesh Quality

 Visual inspection of “sensitive” attributes

 Specular shading

 Reflection lines

 Curvature

 Mean curvature

Mesh quality



Mesh Quality

 Visual inspection of “sensitive” attributes

 Specular shading

 Reflection lines

 Curvature

 Mean curvature

 Gauss curvature

Mesh quality



 Smoothness

 Low geometric noise

Mesh Quality Criteria

Mesh quality criteria



Mesh Quality Criteria

 Smoothness

 Low geometric noise

 Fairness

 Simplest shape

Mesh quality criteria
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 Smoothness

 Low geometric noise

 Fairness

 Simplest shape 

 Adaptive tessellation

 Low complexity
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Mesh Quality Criteria

 Smoothness

 Low geometric noise

 Fairness

 Simplest shape 

 Adaptive tessellation

 Low complexity

 Triangle shape

 Numerical robustness

Mesh quality criteria



Mesh Optimization

 Smoothness

➡ Smoothing

 Fairness

➡ Fairing

 Adaptive tessellation

➡ Decimation

 Triangle shape

➡ Remeshing

Mesh quality criteria


