CGAL

Tutorial

Andreas Fabri &’1« - Pierre Alliez
GeometryFactory L |nria

Outline

Today

e Getting Started
e 2D mesh generation, 3D mesh generation, isotropic remeshing

Tomorrow

e Polygon Meshes
e Polygon Mesh Processing
e Point Set Processing

F

I/K/M

m

D

|

Getting Started

Mission Statement

“Make the large body of geometric algorithms developed in the field of
computational geometry available for industrial applications”

CGAL EU Project Proposal, 1996

The CGAL Library

C++ template class library

Header only

Cross platform: Windows, Linux, macOs, Android
Supported compilers: VC++, g++, clang

For several packages Java/Python bindings (using Swig)

e Dependencies

Boost: selected libraries

GMP, Mpfr: exact number types
Eigen: algebraic solvers
LAStools: 1/0 for LAS file format
OpenCV: random forests

o O O O O

CGAL - Towards a Geometric Computing Library

SIGGRAPH SGP IMR

olygon mesh processing Mesh generation

Computational Geometry
Algorithms Library

SoCG

Point set processing

|
ISPRS (photogrammetry)

CGAL in Numbers

700,000
10,000
3,500
1,000
200

120

20

6

2

lines of C++ code

downloads/year (+ package managers)
manual pages (user and reference manual)
subscribers to user mailing list

commercial users

software components

active developers

months release cycle

licenses: Open Source and commercial

The CGAL Project

e Started 1996 as EU Research Project
e Academic project partners make long term commitment

e Editorial Board

o Steers and animates the project
o Reviews submissions

e Development infrastructure

o CGAL on github, doxygen, travis, nightly testsuite (~40 platforms)
o Two developer meetings per year

GeometryFactory

e 7 engineers with a PhD in CS with focus on geometric computing
+ Rao Fu, Grapes Fellow, + postdoc shared with Inria

e Sales of CGAL software components
e Support to increase customer productivity

e Backed by the CGAL Open Source Project

e Actively involved in the CGAL Project:
3 EB members (including release management)

Commercial Off The Shelf Components

Academia

GeometryFactory

Component Repository

publication

/

prototype

CGAL

component

CGAL

component

CGAL

component

integrate

Industrial CGAL User

Complex End User Software

component

|_I

component

component

-

CGAL

component

component

LOC

700000

600000

500000

400000

300000

200000

100000

developers at
GeometryFactory

| CGAL _|GALIA|__| ECG L ACS | . | GUDHI || POC | .
2000 FFEEmsr 2005 2010 2015 2020

CGAL Kernels and
Exact Geometric Computation [Yap 90]

CGAL Kernels

e Kernel = Foundation layer of all data structures and algorithms

e Constant size geometric objects
point, vector, direction

segment, ray, line, plane

triangle, tetrahedron

iso-rectangle, iso-cuboid

circle, sphere

O O O O O

e Operations on these types
o Tests: orientation, intersection, bounded side, etc.
o Constructions: distance, midpoint, projection, intersection, etc.

CGAL Kernels

@ FExact predicates inexact constructions kernel
® FExact predicates exact constructions kernel
Exact predicates exact constructions kernel with sqgrt

® Cartesian VS Homogeneous
® CartesianVs Simple cartesian

e Simple cartesian<double>

e Different kernels use different number types: double, interval arithmetic,
arbitrary precision integer, rational, or algebraic numbers

Predicates and Constructions

4 q
*r
*r
.q -
S
r
.p p

orientation() in_circle()

intersection()

circumcenter()

The Trouble with Double

orientation(p,q.r) = sign((px-rx)*(qy-ry) - (py-ry)*(qx-rx))

q (24, 24)
negative positive
1

o X=y

........

% T (0.5 + €z, 0.5 4 ¢)

=7 p (0.5, 0.5)

Heuristic Epsilons

“If a value is almost zero consider it as zero” can lead to problems

Forexample P==Q andQ==R = P==R nolonger holds

)

Number Types

Given: orientation(p,q,r) = sign((px-rx)*(qy-ry) - (py-ry)*(gx-rx))

e Built-in type double precision
o For an expression we can precompute the maximal error that may occur
e Interval arithmetic

o When doing an arithmetic operation we can ensure that the result encloses the exact value
o Computing a sign of an interval [inf,sup] is possible if inf>0 or sup <0

e Arbitrary precision integers, rationals, algebraic numbers
o Arithmetic operations are always exact but slow

Fast and Exact Predicates

Given: orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(gx-rx))
Precompute: static error bound for arithmetic expression with double
At runtime:

Compute arithmetic expression with double

If result is uncertain (that is we are in the error interval):

Compute arithmetic expression with interval arithmetic

If result is uncertain (that is the interval contains 0):
Compute arithmetic expression with arbitrary precision arithmetic

Fast and Exact Arithmetic

Lazy number = double interval + arithmetic expression tree

®
)

32 1.5

n']

n=(32+15)*13 .

Test that may trigger exact evaluation: if(n’ < m’) namely when intervals overlap

[Yap et al 1999]

Fast and Exact Constructions

Lazy object = object with interval coordinates + construction tree

m' ([]. []) {
i () J b ([l [])ﬂ

sl\ A b /

Test that may trigger exact evaluation: if(collinear (a’, m’, b’))

[Pion et al 2011]

A Common Error to Avoid

Do not use a test where you know that the filter will fail

Point R = midpoint(P, Q);

if (collinear(P, Q, R) {

Exact Geometric Computing: Merits and Limitations

e If you can stay all the time in the paradigm you are fine
e Otherwise: Robustness inside the black box

Time penalty of exact predicates is reasonable,

e.g., 10% for 3D Delaunay triangulation

e TJopology preserving rounding is non-trivial
Construction depth must be reasonable

e Hybrid approach:
o Use exact predicates where possible
o Switch to double where necessary
o Make an exact construction and convert back to double

Concepts and Models

STL Genericity

template <class Key, class Compare>
class set {
Compare compare;

insert (Key k)
{
if (compare (k, treenode.key) ==
insertLeft (k) ;
else
insertRight (k) ;

Y

Concept = Named Requirements

cppreference.com Create account Search Q

Page Discussion View Edit History

C++ C++ named requirements

C++ named requirements: Compare

Compare is a set of requirements expected by some of the standard library facilities from the user-provided function
object types.

The return value of the function call operation applied to an object of a type satisfying Compare, when contextually
converted to bool , yields true if the first argument of the call appears before the second in the strict weak
ordering relation induced by this type, and false otherwise.

As with any BinaryPredicate, evaluation of that expression is not allowed to call non-const functions through the
dereferenced iterators.

Requirements
The type T satisfies Compare if
» The type T satisfies BinaryPredicate, and
Given
» comp, an object of type T
e equiv(a, b), an expression equivalent to !comp(a, b) && !'comp(b, a)

The following expressions must be valid and have their specified effects

Expression Return type ' Requirements

|Establishes strict weak ordering & relation with the following properties
e For all a, comp(a,a)==false
e If comp(a,b)==true then comp(b,a)==false

e if comp(a,b)==true and comp(b,c)==true then
comp(a,c)==true

implicitly convertible to

comp(a, b) Eonl

Establishes equivalence relationship with the following properties
e Forall a, equiv(a,a)==true
equiv(a, b) | bool o If equiv(a,b)==true, then equiv(b,a)==true

e If equiv(a,b)==true and equiv(b,c)==true, then
equiv(a,c)==true

Note: comp induces a strict total ordering on the equivalence classes determined by equiv

CGAL Genericity

template < class Geometry >
class Delaunay triangulation 2 {
Geometry::0rientation orientation;
Geometry::In circle 1n circle;
void insert (Geometry::Point t) {
1f(in circle(p,qgq,r,t)) {...}
if (orientation(p,q,r) {...}

s

CGAL Genericity

Without explicit conversion to points in the plane
e Triangulate the terrain in an xy-plane
e Triangulate the faces of a polyhedral surface

Courtesy: IPF,Vienna University
of Technology & Inpho GmbH

CGAL Genericity

Documentation of CGAL: :Delaunay triangulation 2< Traits, Tds>:

- Traits amodel of DelaunayTriangulationTraits 2

Documentation of DelaunayTriangulationTraits 2:
- Has Models
All CGAL kernels
CGAL: :Projection traits xy 3<K>

CGAL: :Projection traits 3<K>

Reference Manual Page of the Concept

CGAL 5.2 - 2D Triangulation

¥ CGAL 5.2 - 2D Triangulation
» User Manual
v Reference Manual
v Concepts
ConstrainedDelaunayTriangulationTraits_2
» ConstrainedTriangulationFaceBase_2
» ConstrainedTriangulationTraits_2
» RegularTriangulationFaceBase_2
» RegularTriangulationTraits_2
» RegularTriangulationVertexBase_2
TriangulationFaceBase_2
» TriangulationHierarchyVertexBase_2
» TriangulationTraits_2
» TriangulationVertexBase_2
» TriangulationVertexBaseWithinfo_2

v

Triangulation Classes

v

Vertex and Face Classes

v

Miscellaneous
» Draw a Triangulation 2
Refinement Relationships
Deprecated List
Is Model Relationships
Has Model Relationships
Bibliography

» Class and Concept List

» Examples

List of all members
DelaunayTriangulationTraits_2 Concept Reference

2D Triangulation Reference » Concepts

Definition

In addition to the requirements of the concept TriangulationTraits_2 the concept DelaunayTriangulationTraits 2 requires a predicate to check the empty circle property. The
corresponding predicate type is called type side_of oriented circle 2.

The additional types Line 2, Ray_2 and the constructor objects Construct_ray 2, Construct_circumcenter 2, Construct_bisector_ 2, Construct_midpoint are used to build the
dual Voronoi diagram and are required only if the dual functions are called. The additional predicate type Compare_distance_2 is required if the method nearest_vertex() is used.

Refines:

TriangulationTraits_2

Has Models:
CGAL kernels

CGAL: :Projection traits xy 3<K> (not for dual Voronoi functions)
CGAL: :Projection traits_yz_3<K> (not for dual Voronoi functions)
CGAL: :Projection traits xz 3<K> (not for dual Voronoi functions)

See also
TriangulationTraits_2

Types

typedef unspecified_type Line_2
The line type. More.

typedef unspecified_type Ray_2
The type for ray. More...

typedef unspecified_type Side_of_oriented_circle_2

A function object to perform an incircle test for a point and three other points. More..
typedef unspecified_type Compare_distance_2

A function object to compare two distances for three points. More...
typedef unspecified_type Construct_circumcenter_2

A function object to construct the circumcenter of three points. More. ..

typedef unspecified_type Construct_bisector_2
A function object to construct the bisector of two points. More...

