
Tutorial

Andreas Fabri
GeometryFactory

Pierre Alliez
Inria

Outline
Today

● Getting Started
● 2D mesh generation, 3D mesh generation, isotropic remeshing

Tomorrow

● Polygon Meshes
● Polygon Mesh Processing
● Point Set Processing

Getting Started

Mission Statement
“Make the large body of geometric algorithms developed in the field of
computational geometry available for industrial applications”

 CGAL EU Project Proposal, 1996

The CGAL Library
● C++ template class library
● Header only
● Cross platform: Windows, Linux, macOs, Android
● Supported compilers: VC++, g++, clang
● For several packages Java/Python bindings (using Swig)

● Dependencies
○ Boost: selected libraries
○ GMP, Mpfr: exact number types
○ Eigen: algebraic solvers
○ LAStools: I/O for LAS file format
○ OpenCV: random forests

CGAL - Towards a Geometric Computing Library

Computational Geometry
 Algorithms Library SoCG

Mesh generation

IMRSIGGRAPH SGP

Point set processing

Polygon mesh processing

ISPRS (photogrammetry)

CGAL in Numbers

700,000
10,000

3,500
1,000

200
 120

20
6
2

lines of C++ code
downloads/year (+ package managers)
manual pages (user and reference manual)
subscribers to user mailing list
commercial users
software components
active developers
months release cycle
licenses: Open Source and commercial

The CGAL Project

● Started 1996 as EU Research Project
● Academic project partners make long term commitment

● Editorial Board
○ Steers and animates the project
○ Reviews submissions

● Development infrastructure
○ CGAL on github, doxygen, travis, nightly testsuite (~40 platforms)
○ Two developer meetings per year

GeometryFactory
● 7 engineers with a PhD in CS with focus on geometric computing

+ Rao Fu, Grapes Fellow, + postdoc shared with Inria

● Sales of CGAL software components
● Support to increase customer productivity

● Backed by the CGAL Open Source Project

● Actively involved in the CGAL Project:
3 EB members (including release management)

Commercial Off The Shelf Components

publication

 prototype
 component

component component

component

component

 component

 component

 component

integrate

Academia GeometryFactory Industrial CGAL User

 Component Repository Complex End User Software

4

8

12

CGAL GALIA ECG ACSCGAL GUDHI POC

#developers
in academia

developers at
GeometryFactory

LOC

#dev

CGAL Kernels and
Exact Geometric Computation [Yap 96]

CGAL Kernels

● Kernel = Foundation layer of all data structures and algorithms

● Constant size geometric objects
○ point, vector, direction
○ segment, ray, line, plane
○ triangle, tetrahedron
○ iso-rectangle, iso-cuboid
○ circle, sphere

● Operations on these types
○ Tests: orientation, intersection, bounded side, etc.
○ Constructions: distance, midpoint, projection, intersection, etc.

CGAL Kernels

● Exact_predicates_inexact_constructions_kernel
● Exact_predicates_exact_constructions_kernel
● Exact_predicates_exact_constructions_kernel_with_sqrt

● Cartesian vs Homogeneous
● Cartesian vs Simple_cartesian

● Simple_cartesian<double>

● Different kernels use different number types: double, interval arithmetic,
arbitrary precision integer, rational, or algebraic numbers

Predicates and Constructions

orientation() in_circle() intersection() circumcenter()

The Trouble with Double
orientation(p,q,r) = sign((px-rx)*(qy-ry) - (py-ry)*(qx-rx))

Heuristic Epsilons
“If a value is almost zero consider it as zero” can lead to problems

For example P == Q and Q == R ⇒ P == R no longer holds

Number Types
Given: orientation(p,q,r) = sign((px-rx)*(qy-ry) - (py-ry)*(qx-rx))

● Built-in type double precision
○ For an expression we can precompute the maximal error that may occur

● Interval arithmetic
○ When doing an arithmetic operation we can ensure that the result encloses the exact value
○ Computing a sign of an interval [inf,sup] is possible if inf > 0 or sup < 0

● Arbitrary precision integers, rationals, algebraic numbers
○ Arithmetic operations are always exact but slow

Fast and Exact Predicates
Given: orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))

Precompute: static error bound for arithmetic expression with double

At runtime:

Compute arithmetic expression with double

If result is uncertain (that is we are in the error interval):

 Compute arithmetic expression with interval arithmetic

If result is uncertain (that is the interval contains 0):
 Compute arithmetic expression with arbitrary precision arithmetic

Fast and Exact Arithmetic

Lazy number = double interval + arithmetic expression tree

 n = (3.2 + 1.5) * 13

Test that may trigger exact evaluation: if(n’ < m’) namely when intervals overlap

[Yap et al 1999]

Fast and Exact Constructions

Lazy object = object with interval coordinates + construction tree

Test that may trigger exact evaluation: if(collinear (a’ , m’ , b’))

[Pion et al 2011]

A Common Error to Avoid
Do not use a test where you know that the filter will fail

Point R = midpoint(P, Q);

if (collinear(P, Q, R) {
…
}

Exact Geometric Computing: Merits and Limitations

● If you can stay all the time in the paradigm you are fine
● Otherwise: Robustness inside the black box
● Time penalty of exact predicates is reasonable,

e.g., 10% for 3D Delaunay triangulation

● Topology preserving rounding is non-trivial
● Construction depth must be reasonable

● Hybrid approach:
○ Use exact predicates where possible
○ Switch to double where necessary
○ Make an exact construction and convert back to double

Concepts and Models

STL Genericity
template <class Key, class Compare>
class set {
 Compare compare;

 insert(Key k)
 {
 if (compare(k, treenode.key) == ..)
 insertLeft(k);
 else
 insertRight(k);
 }
};

Concept = Named Requirements

CGAL Genericity
template < class Geometry >
class Delaunay_triangulation_2 {
 Geometry::Orientation orientation;
 Geometry::In_circle in_circle;

 void insert(Geometry::Point t) {
 ...
 if(in_circle(p,q,r,t)) {...}
 ...
 if(orientation(p,q,r){...}
 }
};

Courtesy: IPF,Vienna University
of Technology & Inpho GmbH

CGAL Genericity

Without explicit conversion to points in the plane
● Triangulate the terrain in an xy-plane
● Triangulate the faces of a polyhedral surface

Documentation of CGAL::Delaunay_triangulation_2< Traits, Tds>:

- Traits a model of DelaunayTriangulationTraits_2

Documentation of DelaunayTriangulationTraits_2:

- Has Models

All CGAL kernels

CGAL::Projection_traits_xy_3<K>

CGAL::Projection_traits_3<K>

CGAL Genericity

Reference Manual Page of the Concept

