Optimal Mass Transport

Pierre Alliez

Inria

Outline

- Optimal mass transport
 - Definition
 - Computational aspects
 - Degrees of freedom
- Applications

Optimal Mass Transport

Ínría

q

Move mass from one distribution to the other

T

Wasserstein Metric

$$\mathcal{W}_p(\mu,\nu) \equiv \min_{\pi \in \Pi(\mu,\nu)} \left(\iint_{M \times M} d(x,y)^p \, d\pi(x,y) \right)^{1/p}$$

Distance function on probability distributions

Minimization

$$\min \mathcal{W}_{2}^{2} = \sum_{ij} \pi_{ij} ||x_{i} - y_{j}||^{2}$$

$$\begin{cases} \forall \pi_{ij} \geq 0, \\ m_{i} = \sum_{j} \pi_{ij}, \\ n_{j} = \sum_{i} \pi_{ij}. \end{cases}$$

Mass-preserving constraints

O(n²) variables Linear Programming

Minimization

Min weighted complete graph matching (restricted to binary transport plans)

Degrees of Freedom

- Support of mass
- Transport cost
 - Wasserstein distance
- Transport plan -
 - Regularized
 - Relaxed (unbalanced)
 - Ramified

Applications

(nría_

Shape Reconstruction

Approach in 2D

Given a point set S, find a coarse triangulation T such that S is well approximated by uniform measures on the O- and 1-simplices of T. **How to measure distance D(S,T)?**

 \Rightarrow optimal transport between measures

How to construct *T* that minimizes D(*S*,*T*)?

optimal location problem! \Rightarrow greedy decimation

Mass Transport on a Vertex

(assume given *binary* transport plan)

$$W_2(v,S_v) = \sqrt{\sum_{p_i \in S_v} m_i \|p_i - v\|^2}.$$

Mass Transport on an Edge

(assume given binary transport plan)

Overview

An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes. De Goes, Cohen-Steiner, P.A., and Desbrun. Symposium on Geometry Processing, 2011.

input point set (potentially variable mass)

Delaunay triangulation

after decimation

output after edge filtering

Robustness

More Noise

More Outliers

Variable Mass

Barycenters (Examples from G. Peyré)

Barycenters of measures
$$(\mu_k)_k$$
: $\sum_k \lambda_k = 1$
 $\mu^* \in \operatorname{argmin} \sum_k \lambda_k W_2^2(\mu_k, \mu)$
Generalizes Euclidean barycenter:
If $\mu_k = \delta_{x_k}$ then $\mu^* = \delta_{\sum_k \lambda_k x_k}$
 μ_1
Mc Cann's displacement interpolation.
Theorem: [Agueh, Carlier, 2010]
(for $c(x, y) = ||x - y||^2$)
if μ_1 does not vanish on small sets,
 μ^* exists and is unique.
 μ_1

Regularized Barycenters

Barycenter on a Surface

Color Transfer

Input images: (f,g) (chrominance components) Input measures: $\mu(A) = \mathcal{U}(f^{-1}(A)), \nu(A) = \mathcal{U}(g^{-1}(A))$

