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Local analysis of 3D data

= Geometric attributes
= Advanced 3D descriptors
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Attributes

= Distance and Geodesic distance
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= Distance and Geodesic distance
» Planarity, normal direction
= Smoothness, curvature
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Attributes

» Distance and Geodesic distance

» Planarity, normal direction

* Smoothness, curvature

» Distance to complex geometric primitives
= Symmetry < £\
» Medial Axis, Shape diameter
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3D descriptors
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Segmentation and classification

= Unsupervised (MRF)
= Machine learning (Random Forest)
= Deep learning (PointNet)




Markov Random Fields (MRF)

set of random variables having a Markov property
described by an undirected graph

Let V be the set of nodes in the graph

Card(V) = number of random variables in the MRF
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Markov property

* in 1D (Markov chain)

PTl::Xﬂ_|_1 - .I|X1 — iEl,Xg = Ta,... ,Xﬂ - Iﬂ) - PI'[:XH_|_1 - I|Xﬂ - Iﬂ}.

SO

n usually corresponds to time
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Markov property

= in 2D or on a manifold in 3D (Markov field)

P[ Xi| X -{Xk} ]= P[ Xi| (X, )] With n(k) neighbors of k




Markov property

= in 2D or on a manifold in 3D (Markov field)

P[ Xi| X -{Xk} ]= P[ Xi| (X, )] With n(k) neighbors of k

Spatial
dependency




Notion of neighborhood

N={n(i) /i € V }is a neighborhood system if
"(a) 1¢n()
* (b) ien(j) < ]jen()

= a MRF is always associated to a neighborhood system
defining the dependency between graph nodes
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MRF as an energy

» Gibbs energy (Hammersley-Clifford theorem)

» Let X be a MRF so that for all x € QQ, P(X=x)>0,
Then P(X) is a Gibbs distribution of the form

P(X=x)=exp -U(x)
Z

= U is called a Gibbs energy

m 7 =) yeqexp-U(X)
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Markov property
= Why is the markovian property important ?
= graph with 1M nodes

= if each node is adjacent to every other nodes:
1M*(999,999)/2 edges ~ 500 G edges

= each random variable cannot be dependent to all the
other ones
—complexity needs to be reduced by spatial
considerations




Markov Random Fields for meshes

= Graph nodes = vertices & graph edges = edges

= Graph nodes = facets & graph edges = edges




Bayesian formulation

Let vy, the data (attributes)
X, the label

we want to model the probability of having x knowing y

PriX=2/Y=y)x Pr(Y=y/X=u2). Pr(X = z)
1 ! 1
Posterior probability Likelihood Prior probability

e —




Standard assumptions

= conditional independence of the observation

P(Y=yIX=x) = TLP(y;1x)

= Xis an MRF




From probability to energy

» data term : local dependency hypothesis (l=x)
» regularization : soft constraints

U(l) =Y Di(li)+ 5 Y Vi(li.1y)

eV {ij}cE

Regularisation term

= - log (pairwise interaction
prior) when Bayesian
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Optimal configuration

We search for the label configuration x that
maximizes P(X=x | Y=y)

-  X¥= arg max Pr(X=x]|Y=y)

= arg min U(x)
X
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exercise: binary segmentation

Graph structure 0.
Graph nodes = facets
Graph edges = common edges

Attributes on facet: [0,1] (y)

labels: {white, black} (l)

Energy: U(l) =) Di(l;) +3 Y Vili.tj)

eV {i,j}€FE

. y, if l.="white’
ith D)=
wit () {1— y, otherwise

vyl 0 i,
WIVPTIZ 1 otherwise
2&22,—
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exercise: binary segmentation

Graph structure 0.
Graph nodes = facets
Graph edges = common edges

Attributes on facet: [0,1] (y)

labels: {white, black} (l)

Energy: U(l) =) Di(l;) +3 Y Vili.tj)

eV {i,j}€FE
: e Q1: what is the optimal configuration L if § =0 ? What is its
with D.(1)= y. if I.="white energy ?
1= y; otherwise Q2: what is the optimal configuration if p— inf ?

Q3: what are the other possible optimal configurations in

O if L=l | functionof p?
Vi,j(liilj):{ J

1 otherwise
. lrrzia—




exercise: binary segmentation




Finding the optimal configuration of labels

Graph-cut based approches
fast but restrictions on energy formulation

Monte Carlo sampling
slow but no restriction




Example: mesh segmentation with principal
curvature attributes & soft geometric constraints

Multi-label energy model of the form

Uly=> Di(li)+ 3 Y Vi(li.ly)

ieV {i.,j}€E

with V, set of vertices of the input mesh
E, set of edges in the mesh

l;, the label of the vertex i among : planar (1),
developable convex (2‘)1, developable concave (3)

and




Example: mesh segmentation with principal
curvature attributes & soft geometric constraints

Data term
DL(ZT‘) =1- PT( ‘kmzn ki}?ﬂ;x)
with
G (i) G (Fhiac) =1
(% 1 . —
o g0 y = | Colbmn)(L = Golhas)) il =2

(1 -G (kag}zzn)) J(kgr)a:t:) ifl; =3
(1 -G (k:g?,n))( -G (kma,gj ) if [1 =4

Go(k) = exp(—k*/207)
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Example: mesh segmentation with principal
curvature attributes & soft geometric constraints

Data term

(L D

min’ mGI)

with
ifl; =1

Pr(l;|k

min’




Example: mesh segmentation with principal
curvature attributes & soft geometric constraints

Soft constraints

Label smoothness
Edge preservation

4
1 if l; # L;
Vij(li, 1j) = S 74

min(1. a||W; — Wjl||2) otherwise
\

kmi n-Wmin
with YW= ( )

kma.:c . Wnlax
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Example: mesh segmentation with principal
curvature attributes & soft geometric constraints

Soft constraints

Label smoothness
Edge preservation

Vij (1. ;)

With \ Fmaz-Wmax }




Example: mesh segmentation with principal
curvature attributes & soft geometric constraints




Classification by Machine learning (Random Forest)




Decision tress involve greedy, recursive
partitioning

= Simple dataset wjgth two predictors
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Example with cgal

Geometry Point Cloud
Factory Classification




Classification by Deep learning (PointNet)




PointNet

End-to-end learning for irregular point data
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PointNet

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation. (CVPR’17)
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PointNet
End-to-end learning for irregular point data

Unified framework for various tasks

PointNet
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PointNet: challenges

The model has to respect key properties of point clouds:

Point Permutation Invariance
Point cloud is a set of unordered points

Spatial Transformation Invariance

Point cloud rigid motions should not alter classification

results
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First property: point permutation invariance

Point cloud: set of N unordered points, each represented by
a D dim vector

D
—_—
|

represents the same set as N

D
—_—
|

Model needs to be invariant to N! permutations




First property: point permutation invariance

FOxy e 0x,) = f(X, X, X, ), X e R”

Examples:

f(x,xy,...,x,) = max{x,,X,,..., X, }

(X, X, 00, X )=X, +X,+...+ X
1 2 n 1 2 n

How can we construct a universal family of
symmetric functions by neural networks?




First property: point permutation invariance

Simplest form: directly aggregate all points with a symmetric operator g
Just discovers simple extreme/aggregate properties of the geometry

(1,2,3)
(1,1,1)

(2,3,2)

(2,3.,4)




First property: point permutation invariance

Embed points to a high-dim space before aggregation.
Aggregation in the (redundant) high-dim space encodes more
interesting properties of the geometry.

h
(1,2,3)—

(1,1,1) — 14

I

(2,3,2) —

(2,?;,4)_.




First property: point permutation invariance

f(x,xy,..0x,) =7 og(h(x,),....,h(x,)) is symmetric if § is symmetric

-----------------------

PointNet (vanilla)




Second property: spatial transformation invariance

|dea: Data dependent transformation for automatic alignment

T-Net | transform
params

9p] o
< I Transform < . Trestofthe
= L c network. ..

input transformed
point cloud point cloud




Second property: spatial transformation invariance

|dea: Data dependent transformation for automatic alignment
The transformation is just matrix multiplication!

T-Net transform
matrix;: 3x3

N
0 r Matrix T rest of the
- L Mult. - network...

J
input transformed

point cloud point cloud




PointNet architecture for classification tasks

input mlp (64,64) feature mlp (64,128,1024)
£ transform > transform > >
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.g —_’ _’ rd < ’ ’ —_.[_Iﬁ_’
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Results on indoor scene classification




Other deep learning architectures for point cloud
classification

= 3D CNN

= PointNet++
= DG-CNN

= PointSIFT
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