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Local analysis of 3D data

 Geometric attributes

 Advanced 3D descriptors
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3D descriptors
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Segmentation and classification

 Unsupervised (MRF)

 Machine learning (Random Forest)

 Deep learning (PointNet)
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Markov Random Fields (MRF)

set of random variables having a Markov property 

described by an undirected graph

Let V be the set of nodes in the graph

Card(V) = number of random variables in the MRF
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Markov property

 in 1D (Markov chain)

n usually corresponds to time

X0 X1 Xn Xn+1



Outline

Markov property

 in 2D or on a manifold in 3D (Markov field)

P[ Xk| X –{Xk} ]= P[ Xk|(Xn(k) )]   with n(k) neighbors of k 

Xk3
Xk1

Xk

Xk4Xk2

Xm

Xn
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Notion of neighborhood

N= {n(i) /i  V } is a neighborhood system if

 (a)   i  n(i)

 (b)  i  n(j)  j  n(i)

 a MRF is always associated to a neighborhood system 

defining the dependency between graph nodes
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MRF as an energy

 Gibbs energy (Hammersley-Clifford theorem)

 Let X be a MRF so that for all x  , P(X=x)>0,

Then P(X) is a Gibbs distribution of the form

P(X=x)=exp –U(x)

 U is called a Gibbs energy



Z
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Markov property

 Why is the markovian property important ?

 graph with 1M nodes

 if each node is adjacent to every other nodes: 

1M*(999,999)/2 edges ~ 500 G edges

 each random variable cannot be dependent to all the 

other ones

complexity needs to be reduced by spatial 

considerations
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Markov Random Fields for meshes

 Graph nodes = vertices &   graph edges = edges

 Graph nodes = facets &   graph edges = edges
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Bayesian formulation

Let   y, the data (attributes)

x, the label

we want to model the probability of having x knowing y

Bayes law

Posterior probability Likelihood Prior probability



 conditional independence of the observation

P(Y=y|X=x)  =   P(yi|xi)

 X is an MRF

Standard assumptions

i  V



From probability to energy

 data term : local dependency hypothesis (l=x)

 regularization : soft constraints

Regularisation term

= - log (pairwise interaction 

prior) when Bayesian

Data term

= -log (likelihhood) 

when Bayesian



We search for the label configuration x that 

maximizes  P(X=x | Y=y)

x= arg max Pr(X=x|Y=y)

= arg min U(x)

Optimal configuration

x

x



exercise: binary segmentation

Graph structure

Graph nodes = facets

Graph edges = common edges

Attributes on facet: [0,1] (y)

labels: {white, black} (l)

Energy:

with 

or          ?

0.1

0.1

0.2

0.8
0.60.9

0.7

0.7

0.6

0

0

0.2

0

0.1
0.10.9

0

0.1










otherwisey

whitelify
lD

i

ii

ii
1

''
)(



 


otherwise

llif
llV

ji

jiji
1

0
),(,



jji

exercise: binary segmentation

Graph structure

Graph nodes = facets

Graph edges = common edges

Attributes on facet: [0,1] (y)

labels: {white, black} (l)

Energy:

with 

or          ?

0.1

0.1

0.2

0.8
0.60.9

0.7

0.7

0.6

0

0

0.2

0

0.1
0.10.9

0

0.1










otherwisey

whitelify
lD

i

ii

ii
1

''
)(



 


otherwise

llif
llV

ji

jiji
1

0
),(,

Q1: what is the optimal configuration l if β =0 ? What is its

energy ?

Q2: what is the optimal configuration if β inf ?

Q3: what are the other possible optimal configurations in 

function of β ?
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exercise: binary segmentation



Finding the optimal configuration of labels

Graph-cut based approches

fast but restrictions on energy formulation 

Monte Carlo sampling

slow but no restriction



Example: mesh segmentation with principal 

curvature attributes & soft geometric constraints

Multi-label energy model of the form

with V, set of vertices of the input mesh

E, set of edges in the mesh

li, the label of the vertex i among : planar (1), 
developable convex (2), developable concave (3) 
and non developable (4)



Data term
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Example: mesh segmentation with principal 

curvature attributes & soft geometric constraints



Outline

Classification by Machine learning (Random Forest)



 Simple dataset with two predictors

 Greedy, recursive partitioning along TI and PE

Decision tress involve greedy, recursive 

partitioning



Example with cgal
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Classification by Deep learning (PointNet)
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End-to-end learning for irregular point data 

PointNet

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning 

on Point Sets for 3D Classification and Segmentation. (CVPR’17)

PointNet



End-to-end learning for irregular point data 

Unified framework for various tasks

PointNet



PointNet: challenges



First property: point permutation invariance
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First property: point permutation invariance



Second property: spatial transformation invariance



Second property: spatial transformation invariance



PointNet architecture for classification tasks



Results on indoor scene classification



Other deep learning architectures for point cloud 

classification

 3D CNN

 PointNet++

 DG-CNN

 PointSIFT

 …


