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Outline

• Parametric approximations

• Polygon meshes

• Data structures

• Discrete differential geometry



Parametric Representation



Parametric Representation



Piecewise Approximation



Polynomial Approximation



Polynomial Approximation



Polygon Meshes
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POLYGON MESHES



Graph Definitions
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Graph Embedding



Graph Embedding



Triangulations



Topological Genus



Euler-Poincare Formula

For a closed polygonal mesh of genus g, the 
relation of the number V of vertices, E of edges, 
and F of faces is given by Euler’s formula

V - E + F = 2(1-g)

Term 2(1-g): Euler characteristic



Euler Consequences



Two-Manifold Surfaces



DATA STRUCTURES



Mesh Data Structure

How to store geometry & connectivity?

Compact storage

File formats

Efficient algorithms on meshes

Identify time-critical operations

All vertices/edges of a face

All incident vertices/edges/faces of a vertex



Data Structure

What should be stored?

• Geometry: 3D coordinates

• Attributes: normal, color, texture coordinate 
(per vertex, per face, per edge)

• Connectivity

What is adjacent to what



Data Structure

What should it support?
• Rendering
• Queries

– What are the vertices of face #3?
– Is vertex #6 adjacent to vertex #12?
– Which faces are adjacent to face #7?

• Modifications
– Remove/add a vertex/face
– Vertex split, edge collapse



Data Structure

• How good is it?

– Time to construct (preprocessing)

– Time to answer a query

– Time to perform an operation

– Space complexity

– Redundancy



Face Set



Shared Vertices

Vertices

v1 (x1;y1;z1) 

v2 (x2;y2;z2) 

v3 (x3;y3;z3) 

v4 (x4;y4;z4) 

v5 (x5;y5;z5) 

v6 (x6;y6;z6) 

v7 (x7;y7;z7)

Connectivity

f1 (v1;v3;v2)

f2 (v4;v3;v1)

f3 (v4;v1;v5)

f4 (v1;v6;v5)

f5 (v6;v1;v7)

f6 (v2;v7;v1)

f7 (…)



Shared Vertices



Face-based Connectivity



Edge-Based Connectivity



Halfedge-Based Connectivity



Example: One-ring Traversal



DISCRETE DIFFERENTIAL GEOMETRY



Discrete Curvatures

How to discretize curvatures on a mesh?

– Zero curvature within triangles

– Infinite curvature at edges / vertices

– Pointwise definition does not make sense



Discrete Curvatures

Approximate differential properties at point x as

average over local neighborhood A(x)

– x is a mesh vertex

– A(x) within one-ring neighborhood



Discrete Curvatures

Approximate differential properties at point x as

average over local neighborhood A(x)



Discrete Curvatures

Which curvatures to discretize?

– Discretize Laplace-Beltrami operator

– Laplace-Beltrami gives us mean curvature H

– Discretize Gaussian curvature K

– From H and K we can compute κ1 and κ2



Laplace Operator



Laplace Operator



Laplace Operator



Laplace Operator on Meshes?



Uniform Laplace



Uniform Laplace

Curvature flow



Barycentric Cells

Connect edge midpoints and triangle 
barycenters

– Simple to compute

– Area: 1/3 of triangle areas

– Slightly wrong for obtuse triangles



Mixed Cells

Connect edge midpoints and

– Circumcenters for non-obtuse triangles

– Midpoint of opposite edge for obtuse triangles

– Better approximation, more complex to compute.



“Cotan” Laplace



Reminder: Triangle barycentric coordinates

A. F. Möbius

[1790−1868]

1/36



“Cotan” Laplace



Cotan Laplace



Cotan Laplace



Discrete Laplace-Beltrami



Discrete Curvatures



PRINCIPAL CURVATURES



Principal Curvatures

Lines of curvaturesPrincipal curvature directions



Principal Curvature Directions

We can define curvatures at an edge e in terms 
of the angle (e) between curve segments*:

– The min/max curvature is 0, with principal 
curvature direction along e.

– The max/min curvature is equal to the
dihedral angle ((e)=n1n2), with
principal curvature direction along nexe.

f1
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e
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n2

ne

* [Cohen-Steiner et al. ‘03]



Principal Curvature Directions

This allows us to define a 3x3 curvature tensor 
along the edge e as the symmetric matrix with 
eigenvalue (e) in the direction across e and 
eigenvalues of 0 in perpendicular directions:
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Principal Curvature Directions

This, in turn, allows us to define the curvature 
tensor around a vertex v, average over a 
neighborhood B around v:
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Principal Curvature Directions

Computing the eigen-decomposition of the 
curvature tensor we get an estimate of:

– The normal: The eigenvector with smallest 
absolute eigenvalue.

– The principal directions and values: The other two 
eigenvectors and their associated eigenvalues.
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Principal Curvature Directions

Note:

When the two principal directions have the 
same principal curvature values, the principal 
directions are not well defined.
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Principal Curvature Directions

Note:

When the two principal directions 
have the same principal curvature 
values, the principal directions are 
not well defined.

Such points are called umbilical
points.
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Umbilic Points







wedge

trisector



Principal Direction Fields

Linear singularities

trisector wedge

umbilic
(spherical point)
2D tensor 
proportional to 
identity

Topology of tensor fields.

[Delmarcelle & Hesselink 94]

[Tricoche 02]



Principal Curvature Lines

What are the principal curvature lines?

Assuming that we are away from the umbilical 
points, we can define two vector fields:

1. vmin: Aligns with the min. curvature

2. vmax: Aligns with the max. curvature



Principal Curvature Lines

What are the principal curvature lines?

Assuming that we are away from the umbilical 
points, we can define two vector fields:

1. vmin: Aligns with the min. curvature

2. vmax: Aligns with the max. curvature

Given a starting p, solve the diff. eq.:

ptvt  )0(     s.t.    ))(()(' maxmin/maxmin/ 



Principal Curvature Lines

How far should we integrate?

We should integrate the min/max curves until they are 
within a prescribed density:

1. Accuracy of the remesh

2. Local curvature



Principal Curvature Lines

Q: If the user wants the remeshed surface to be within a 
distance of  from the original surface, how far should the 
minimal/maximal curvature lines be from each other?



Principal Curvature Lines

A: Consider the surface between two lines of 
minimal/maximal curvature:

l1 l2



Principal Curvature Lines

A: Consider the surface between two lines of 
minimal/maximal curvature:

The curve between them will follow the 
maximal/minimal curvature direction.

l1 l2
c



Principal Curvature Lines

A: Consider the surface between two lines of 
minimal/maximal curvature:

The curve between them will follow the 
maximal/minimal curvature direction.

The curve will be, roughly, a circular arc
with radius equal to one over the
maximal/minimal curvature.

l1 l2
c



Principal Curvature Lines

Looking at this in cross section, we choose the 
distance d between the curves so that the 
distance to the surface is below a threshold .
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Principal Curvature Lines

Looking at this in cross section, we choose the 
distance d between the curves so that the 
distance to the surface is below a threshold .

Denoting the distance by  we get:

l1 l2
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Principal Curvature Lines

Looking at this in cross section, we choose the 
distance d between the curves so that the 
distance to the surface is below a threshold .

Denoting the distance by  we get:
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Principal Curvature Lines
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