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Parametric Representation

« Surface is the range of a function

f:QCR* =R’ Sq=fFf(Q)

« 2D example: Circle

f:[0,27] — IR*
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Piecewise Approximation

» Surface is the range of a function
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Polynomial Approximation

« Polynomials are computable functions

f(t) = Z ot = Zai i (1)
i—0 0

 Taylor expansion up to degree p

1 ; .
g(h) = Z i—!g("“)([)) h' + O(hP™T)

i—=0

 Error for approximating g by polynomial f

F(t) = glts), 0<ty<-<t,<h

1 I _
Lf(t) —g(t)] < max P+ H (t—t;) = O(}z“”“)
(p+1)! pe



Polynomial Approximation

* Approximation error is O(hr*!)

* Improve approximation quality by
— Increasing p ... higher order polynomials
— decreasing / ... smaller / more segments

* Issues
— smoothness of the target data ( max; f @*1(r))
— smoothness conditions between segments



Polygon Meshes

« Polygonal meshes are a good compromise
— Piecewise linear approximation — error is O(h?)

0.4%
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Polygon Meshes

* Polygonal meshes are a good compromise

— Piecewise linear approximation — error is O(h?)
— Error inverse proportional to #faces

— Arbitrary topology surfaces

— Piecewise smooth surfaces

— Curvature adaptive sampling




POLYGON MESHES



Graph Definitions

Graph{V, E}
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Graph Definitions

Graph{V, E}
Vertices V={A,B, C, ..., K}
Edges E ={(AB), (AE), (CD), ...}

Faces F={(ABE), (EBF), (EFIH), ...



Graph Definitions

Vertex degree or valence:
number of incident edges.

deg(A) =4
deg(E) =5




Graph Definitions

Connected: Path of edges
connecting every two vertices.
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Graph Definitions

Connected: Path of edges
connecting every two vertices.

Subgraph: Graph{V’, E’}is a
subgraph of graph {V, E }if V’is a
subset of Vand E’is a subset of £
incident on V.

Connected component: Maximally
connected subgraph.




Graph Embedding

Embedding: Graph is embedded in R¢, if
each vertex is assigned a position in R?.

=
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Graph Embedding
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Triangulations

Triangulation: Graph where every
face is a triangle.

Why...?
= simplifies data structures
= simplifies rendering

= simplifies algorithms

= by definition, triangle is planar

= any polygon can be triangulated



Topological Genus

Genus: Maximal number of closed simple
cutting curves that do not disconnect the
graph into multiple components.

(Informally, the number of holes or handles.)

Genus O



Fuler-Poincare Formula

For a closed polygonal mesh of genus g, the
relation of the number V of vertices, E of edges,
and F of faces is given by Euler’s formula

V-E+F=2(1-g)

Term 2(1-g): Euler characteristic



Euler Consequences

* Trilangle meshes
-F=2V ,
- E=3V il
— Average valence = 6

« Quad meshes
-F=V
- E=2V
— Average valence = 4




Two-Manifold Surfaces

 Local neighborhoods are disk-shaped

f(D.[u,v]) = Ds[f(u,v)]

« Guarantees meaningful neighbor enumeration
— required by most algorithms

« Non-manifold examples:

&



DATA STRUCTURES



Mesh Data Structure

How to store geometry & connectivity?
Compact storage

File formats
Efficient algorithms on meshes

|0
A
A

entify time-critical operations
| vertices/edges of a face
| incident vertices/edges/faces of a vertex



Data Structure

What should be stored?
 Geometry: 3D coordinates

e Attributes: normal, color, texture coordinate
(per vertex, per face, per edge)

* Connectivity
What is adjacent to what



Data Structure

What should it support?
* Rendering
* Queries
— What are the vertices of face #3?
— |s vertex #6 adjacent to vertex #1277
— Which faces are adjacent to face #7°?
 Modifications
— Remove/add a vertex/face
— Vertex split, edge collapse



Data Structure

* How good is it?
— Time to construct (preprocessing)
— Time to answer a query
— Time to perform an operation
— Space complexity
— Redundancy



 Face:

— 3 positions

Face Set

Triangles

X11 Vi1 211 | X1z Y1z 212 | Xi13 YVi3 213

X21 Y21 Z21 | Xz22 Y22 Z22 |Xz23 Y23 Z23

Xr1 Yr1 Zr1 | ¥F2 ¥YrF2 Z2r2 | Xr3 VYF3 ZF3

36 B/f =72 Blv
no connectivity!
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Shared Vertices

Vertices

vl (x1;y1;z1)
v2 (x2;y2;22)
v3 (x3;y3;z3)
v4 (x4;y4;z4)
v5 (x5;y5;25)
v6 (x6;y6;26)
v7 (x7;y7;27)

Connectivity
f1 (vi;v3;v2)
f2 (v4;v3;vl)
f3 (v4;v1;v5)
f4 (v1;v6;v5)
5 (v6;v1;v7)
f6 (v2;v7;vl)
f7 (...)



Shared Vertices

* Indexed Face List R Triangles

— Vertex: position X1 Y1 21 in i iz

— Face: vertexindices

Xv Yv Zv

ip1 ipz irs

12 B/v + 12 B/f = 36 B/v
no neighborhood info



Face-based Connectivity

« Vertex:
— position
— 1 face

 Face:
— 3 vertices

— 3 face neighbors

64 B/v
no edges!



Edge-Based Connectivity

* Vertex
— position
— 1 edge
« Edge

— 2 vertices

— 2 faces
— 4 edges

120 B/v
« Face edge orientation?

— 1 edge



Halfedge-Based Connectivity

« Vertex

— position 4 |
— 1 halfedge '
| @]
» Halfedge .
— 1 vertex !
— 1 face Q

— 1, 2, or 3 halfedges
96 to 144 B/v

 Face no case distinctions
during traversal

— 1 halfedge



N oo RN 2

Example: One-ring Traversal

. Start at vertex
. Outgoing halfedge
. Opposite halfedge

Next halfedge

. Opposite

Next

o



DISCRETE DIFFERENTIAL GEOMETRY



Discrete Curvatures

How to discretize curvatures on a mesh?
— Zero curvature within triangles
— Infinite curvature at edges / vertices

— Pointwise definition does not make sense




Discrete Curvatures

Approximate differential properties at point x as
average over local neighborhood A(x)

— X is a mesh vertex

— A(x) within one-ring neighborhood

: /ﬁ(ﬂm

7




Discrete Curvatures

Approximate differential properties at point x as
average over local neighborhood A(x)

.
K(v) ~ e / )K(x) dA

A(X)




Discrete Curvatures

Which curvatures to discretize?

— Discretize Laplace-Beltrami operator

— Laplace-Beltrami gives us mean curvature H
— Discretize Gaussian curvature K

— From H and K we can compute k1 and k2



Laplace Operator

dient
Laplace Sraerljgr 2nd partial
operator P / derivatives
Af =divVf = f
function in Cartesian
divergence

Euclidean space coordinates

operator



Laplace Operator

gradient

Laplace- operator

Beltrami

\ /

Asf — diVS st

7\

function on

divergence
manifold S J

operator



Laplace Operator

gradient

Laplace-
P operator mean

Beltrami

\ / curvature

Asx =divs Vgx = —2Hn

7N

coordinate
function

surface
divergence normal

operator



Laplace Operator on Meshes?

- Extend finite differences to meshes?
— What weights per vertex / edge?

o ot Q ? ?

1D grid 2D grid 2D/3D mesh



Uniform Laplace

« Uniform discretization

Busf(0) = T 3 ()= (w)

v j EJVl(’U?; )

* Properties
— depends only on connectivity

/l}

— simple and efficient
— bad approximation for irregular triangulations



Uniform Laplace

« Uniform discretization

1
AuniXi = T X —X;) = —2Hn
], 2 097X

- Properties
— depends only on connectivity

— simple and efficient

— bad approximation for irregular triangulations
* can give non-zero H for planar meshes

Curvature flow

- tangential drift for mesh smoothing



Barycentric Cells

Connect edge midpoints and triangle
barycenters

— Simple to compute
— Area: 1/3 of triangle areas
— Slightly wrong for obtuse triangles



Mixed Cells

Connect edge midpoints and

— Circumcenters for non-obtuse triangles

— Midpoint of opposite edge for obtuse triangles

— Better approximation, more complex to compute.



“Cotan” Laplace

* Piecewise linear functions

function value at vertex

—

fu) = fiBi(u) + f;Bj(u) + fr.Bi(a)

N

linear basis function




Reminder: Triangle barycentric coordinates

#E St

A=A + Ay + Aj A. F. M&bius
[1790-1868]

1/36



“Cotan” Laplace

+ Piecewise linear functions

f(u) = fiBi(u)+ f;Bj(u) + fiBi(u)

— Gradient

Viw) = fiVBi(u) + f;VBj(u) + fiVB}.(u)




Cotan Laplace

* Piecewise linear functions

f(u) = fiBi(u) + f;Bj(u) + frBi(u)
— Gradient

Vf() = fiVBi(u)+ f;VB;(u) + frVBy(u)

M,
(xXk — X;)

2 AT

VB,(U) =




Cotan Laplace
 Divergence Theorem
/‘ divF(u)dA = / F(u) - n(u)ds
JA,; JOA;
— Applied to Laplacian

/ Af(u)dA = / divV f(u)dA = | Vf(u) -n(ua)ds
J A, J A,

JOA;



* Problems

Discrete Laplace-Beltrami

» Cotangent discretization

Asf(v) = 5 Al(z:) Z (cot a; + cot 3;) (f(v;) — f(v))

v 7 E J\/r]_ ('1})

— weights can become negative (when?)

— depends on triangulation

- Still the most widely used discretization



Discrete Curvatures

- Mean curvature (absolute value)

1
H = = | Asx|

« (Gaussian curvature

K=(@2r->) 6,)/A

C ‘ 0 ;
» Principal curvatures !

ki=H+\VH?2— K ko =H — VH? - K



PRINCIPAL CURVATURES



Principal Curvatures

Principal curvature directions Lines of curvatures



Principal Curvature Directions

We can define curvatures at an edge e in terms
of the angle [3(e) between curve segments*:

— The min/max curvature is 0, with principal
curvature direction along e.

— The max/min curvature is equal to the
dihedral angle (B(e)=£n,n,), with
principal curvature direction along n_xe.

* [Cohen-Steiner et al. ‘03]



Principal Curvature Directions

This allows us to define a 3x3 curvature tensor
along the edge e as the symmetric matrix with
eigenvalue [3(e) in the direction across e and
eigenvalues of 0 in perpendicular directions:

C(pee)=pe) >(n, xe)n, xe)

In. er




Principal Curvature Directions

This, in turn, allows us to define the curvature
tensor around a vertex v, average over a
neighborhood B around v:

1

CW) = ﬁ;\B el (e) W(ne <e)n, xe)

TASC R
N

wd ), {

RNV
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Principal Curvature Directions
1

i xd (n, xe)n, xe)
e

C(v):%Z\Bme\ﬂ(e)

Computing the eigen-decomposition of the
curvature tensor we get an estimate of:

— The normal: The eigenvector with smallest
absolute eigenvalue.

— The principal directions and values: The other two
eigenvectors and their associated eigenvalues.




Principal Curvature Directions

1
Hn v eHZ (ne X e)(ne X e)t

C(v):%Z\Bme\ﬂ(e)
Note:

When the two principal directions have the

same principal curvature values, the principal
directions are not well defined.



Principal Curvature Directions

C(v) = iZ\B el ,B(e)%(ne xe)n, xe)
B~ In. x|

e

Note:

When the two principal directions
have the same principal curvature
values, the principal directions are
not well defined.

Such points are called umbilical
points.




ilic Points
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Principal Direction Fields

Linear SiﬂgUlaritieS Topology of tensor fields.

[Delmarcelle & Hesselink 94]
[Tricoche 02]

trisector wedge



Principal Curvature Lines

What are the principal curvature lines?

Assuming that we are away from the umbilical
points, we can define two vector fields:

1. v_..: Aligns with the min. curvature
2. v Aligns with the max. curvature



Principal Curvature Lines

What are the principal curvature lines?

Assuming that we are away from the umblllcal
points, we can define two vector field [ M @

1. v_..: Aligns with the min. curvature
2. v Aligns with the max. curvature

Given a starting p, solve the diff. eq.:

7/min/maxl(t) = Vmin/max (7/(t)) S.L. 7/(0) — p



Principal Curvature Lines

How far should we integrate?

We should integrate the min/max curves until they are
within a prescribed density:

1. Accuracy of the remesh
2. Local curvature



Principal Curvature Lines

Q: If the user wants the remeshed surface to be within a
distance of € from the original surface, how far should the
minimal/maximal curvature lines be from each other?



Principal Curvature Lines

A: Consider the surface between two lines of
minimal/maximal curvature:




Principal Curvature Lines

A: Consider the surface between two lines of
minimal/maximal curvature:

The curve between them will follow the
maximal/minimal curvature direction.



Principal Curvature Lines

A: Consider the surface between two lines of
minimal/maximal curvature:

The curve between them will follow the
maximal/minimal curvature direction.

The curve will be, roughly, a circular arc A /7
with radius equal to one over the ‘
maximal/minimal curvature.



Principal Curvature Lines

Looking at this in cross section, we choose the
distance d between the curves so that the

distance to the surface is below a threshold ¢.
c o
/ -~ E"\ I2



Principal Curvature Lines

Looking at this in cross section, we choose the
distance d between the curves so that the
distance to the surface is below a threshold ¢. |

Denoting the distance by € we get:

() ()



Principal Curvature Lines

Looking at this in cross section, we choose the
distance d between the curves so that the
distance to the surface is below a threshold ¢. |

Denoting thez distancze by £ we get:
) (e ()
: ZZJE(%_g)




Principal Curvature Lines
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