Discrete Surfaces

Pierre Alliez Inria

Outline

- Parametric approximations
- Polygon meshes
- Data structures
- Discrete differential geometry

Parametric Representation

• Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_\Omega = \mathbf{f}(\Omega)$$

• 2D example: Circle

$$\mathbf{f}: [0, 2\pi] \to \mathbb{R}^2$$
$$\mathbf{f}(t) = \begin{pmatrix} r\cos(t) \\ r\sin(t) \end{pmatrix}$$

Parametric Representation

• Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_{\Omega} = \mathbf{f}(\Omega)$$

• 2D example: Island coast line

$$\mathbf{f} : [0, 2\pi] \to \mathbb{R}^2$$
$$\mathbf{f}(t) = \begin{pmatrix} ??? \\ ??? \end{pmatrix}$$

Piecewise Approximation

Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_\Omega = \mathbf{f}(\Omega)$$

• 2D example: Island coast line

$$\mathbf{f} : [0, 2\pi] \to \mathbb{I}\mathbb{R}^2$$
$$\mathbf{f}(t) = \begin{pmatrix} ??? \\ ??? \end{pmatrix}$$

Polynomial Approximation

Polynomials are computable functions

$$f(t) = \sum_{i=0}^{p} c_i t^i = \sum_{i=0}^{p} \tilde{c}_i \phi_i(t)$$

Taylor expansion up to degree p

$$g(h) = \sum_{i=0}^{p} \frac{1}{i!} g^{(i)}(0) h^{i} + O(h^{p+1})$$

• Error for approximating g by polynomial f

$$f(t_i) = g(t_i), \quad 0 \le t_0 < \dots < t_p \le h$$
$$|f(t) - g(t)| \le \frac{1}{(p+1)!} \max f^{(p+1)} \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$

Polynomial Approximation

- Approximation error is $O(h^{p+1})$
- Improve approximation quality by
 - increasing $p \dots$ higher order polynomials
 - decreasing h … smaller / more segments
- Issues
 - smoothness of the target data ($\max_t f^{(p+1)}(t)$)
 - smoothness conditions between segments

- Polygonal meshes are a good compromise
 - Piecewise linear approximation \rightarrow error is $O(h^2)$

- Polygonal meshes are a good compromise
 - Piecewise linear approximation \rightarrow error is $O(h^2)$
 - Error inverse proportional to #faces

- Polygonal meshes are a good compromise
 - Piecewise linear approximation \rightarrow error is $O(h^2)$
 - Error inverse proportional to #faces
 - Arbitrary topology surfaces

- Polygonal meshes are a good compromise
 - Piecewise linear approximation \rightarrow error is $O(h^2)$
 - Error inverse proportional to #faces
 - Arbitrary topology surfaces
 - Piecewise smooth surfaces

- Polygonal meshes are a good compromise
 - Piecewise linear approximation \rightarrow error is $O(h^2)$
 - Error inverse proportional to #faces
 - Arbitrary topology surfaces
 - Piecewise smooth surfaces
 - Curvature adaptive sampling

POLYGON MESHES

Graph {V, E }

Graph {V, E} Vertices $V = \{A, B, C, ..., K\}$

Graph {V, E} Vertices $V = \{A, B, C, ..., K\}$ Edges $E = \{(AB), (AE), (CD), ...\}$

Graph {V, E} Vertices $V = \{A, B, C, ..., K\}$ Edges $E = \{(AB), (AE), (CD), ...\}$ Faces $F = \{(ABE), (EBF), (EFIH), ...\}$

Vertex degree or valence:

number of incident edges.

$$deg(A) = 4$$

deg(E) = 5

Connected: Path of edges connecting every two vertices.

Connected: Path of edges connecting every two vertices.

Subgraph: Graph $\{V', E'\}$ is a subgraph of graph $\{V, E\}$ if V' is a subset of V and E' is a subset of E incident on V'.

Connected: Path of edges connecting every two vertices.

Subgraph: Graph $\{V', E'\}$ is a subgraph of graph $\{V, E\}$ if V' is a subset of V and E' is a subset of E incident on V'.

Connected component: Maximally connected subgraph.

Connected: Path of edges connecting every two vertices.

Subgraph: Graph $\{V', E'\}$ is a subgraph of graph $\{V, E\}$ if V' is a subset of V and E' is a subset of E incident on V'.

Connected component: Maximally connected subgraph.

Graph Embedding

Embedding: Graph is embedded in \mathbf{R}^d , if each vertex is assigned a position in \mathbf{R}^d .

Embedded in \mathbf{R}^2

Embedded in **R**³

Graph Embedding

Embedding: Graph is embedded in \mathbf{R}^d , if each vertex is assigned a position in \mathbf{R}^d .

Embedded in \mathbf{R}^3

Triangulations

Triangulation: Graph where every face is a triangle.

Why...?

- simplifies data structures
- simplifies rendering
- simplifies algorithms
- by definition, triangle is planar
- any polygon can be triangulated

Topological Genus

Genus: Maximal number of closed simple cutting curves that do not disconnect the graph into multiple components.

(Informally, the number of holes or handles.)

Euler-Poincare Formula

For a closed polygonal mesh of genus *g*, the relation of the number *V* of vertices, *E* of edges, and *F* of faces is given by *Euler's formula*

$$V-E+F=2(1-g)$$

Term 2(1-g): Euler characteristic

Euler Consequences

- Triangle meshes
 - F ≈ 2V
 - E ≈ 3V

– Average valence = 6

- Quad meshes
 - $F \approx V$
 - E ≈ 2V
 - Average valence = 4

Two-Manifold Surfaces

• Local neighborhoods are disk-shaped

 $\mathbf{f}(D_{\varepsilon}[u,v]) = D_{\delta}[\mathbf{f}(u,v)]$

- Guarantees meaningful neighbor enumeration
 - required by most algorithms
- Non-manifold examples:

DATA STRUCTURES

Mesh Data Structure

- How to store geometry & connectivity?
- Compact storage
 - File formats
- Efficient algorithms on meshes
 - Identify time-critical operations
 - All vertices/edges of a face
 - All incident vertices/edges/faces of a vertex

Data Structure

What should be stored?

- Geometry: 3D coordinates
- Attributes: normal, color, texture coordinate (per vertex, per face, per edge)
- Connectivity

What is adjacent to what

Data Structure

What should it support?

- Rendering
- Queries
 - What are the vertices of face #3?
 - Is vertex #6 adjacent to vertex #12?
 - Which faces are adjacent to face #7?
- Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse

Data Structure

- How good is it?
 - Time to construct (preprocessing)
 - Time to answer a query
 - Time to perform an operation
 - Space complexity
 - Redundancy

Face Set

- Face:
 - 3 positions

Triangles		
x_{11} y_{11} z_{11}	x_{12} y_{12} z_{12}	x_{13} y_{13} z_{13}
x_{21} y_{21} z_{21}	x_{22} y_{22} z_{22}	x_{23} y_{23} z_{23}
	•••	
$\mathbf{x}_{\text{F1}} \ \mathbf{y}_{\text{F1}} \ \mathbf{z}_{\text{F1}}$	$\mathbf{x}_{\text{F2}} \ \mathbf{y}_{\text{F2}} \ \mathbf{z}_{\text{F2}}$	$x_{\rm F3} \ y_{\rm F3} \ z_{\rm F3}$

36 B/f = 72 B/v no connectivity!

Shared Vertices

Vertices	Connectivity
<mark>v1</mark> (x1;y1;z1)	f1 (<mark>v1</mark> ;v3;v2)
v2 (x2;y2;z2)	f2 (v4;v3; <mark>v1</mark>)
v3 (x3;y3;z3)	f3 (v4; <mark>v1</mark> ;v5)
v4 (x4;y4;z4)	f4 (<mark>v1</mark> ;v6;v5)
v5 (x5;y5;z5)	f5 (v6; <mark>v1</mark> ;v7)
v6 (x6;y6;z6)	f6 (v2;v7; <mark>v1</mark>)
v7 (x7;y7;z7)	f7 ()

Shared Vertices

- Indexed Face List
 - Vertex: position
 - Face: vertex indices

Vertices	Triangles
$\mathbf{x}_1 \ \mathbf{y}_1 \ \mathbf{z}_1$	i ₁₁ i ₁₂ i ₁₃
$x_v y_v z_v$	
	i _{F1} i _{F2} i _{F3}

12 B/v + 12 B/f = 36 B/v no neighborhood info

Face-based Connectivity

- Vertex:
 - position
 - 1 face
- Face:
 - 3 vertices
 - 3 face neighbors

64 B/v no edges!

Edge-Based Connectivity

- Vertex
 - position
 - 1 edge
- Edge
 - 2 vertices
 - 2 faces
 - 4 edges
- Face
 - 1 edge

120 B/v edge orientation?

Halfedge-Based Connectivity

- Vertex
 - position
 - 1 halfedge
- Halfedge
 - 1 vertex
 - 1 face
 - 1, 2, or 3 halfedges
- Face
 - 1 halfedge

96 to 144 B/v no case distinctions during traversal

Example: One-ring Traversal

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite
- 6. Next
- 7. ...

DISCRETE DIFFERENTIAL GEOMETRY

How to discretize curvatures on a mesh?

- Zero curvature within triangles
- Infinite curvature at edges / vertices
- Pointwise definition does not make sense

Approximate differential properties at point \mathbf{x} as average over local neighborhood $A(\mathbf{x})$

- **x** is a mesh vertex
- $-A(\mathbf{x})$ within one-ring neighborhood

Approximate differential properties at point \mathbf{x} as average over local neighborhood $A(\mathbf{x})$

$$K(v) \approx \frac{1}{A(v)} \int_{A(v)} K(\mathbf{x}) \, \mathrm{d}A$$

Which curvatures to discretize?

- Discretize Laplace-Beltrami operator
- Laplace-Beltrami gives us mean curvature H
- Discretize Gaussian curvature K
- From *H* and *K* we can compute к1 and к2

Laplace Operator

Laplace Operator

Laplace Operator

Laplace Operator on Meshes?

- Extend finite differences to meshes?
 - What weights per vertex / edge?

Uniform Laplace

Uniform discretization

$$\Delta_{\mathrm{uni}} f(v_i) := \frac{1}{|\mathcal{N}_1(v_i)|} \sum_{v_j \in \mathcal{N}_1(v_i)} \left(f(v_j) - f(v_i) \right)$$

- Properties
 - depends only on connectivity
 - simple and efficient
 - bad approximation for irregular triangulations

Uniform Laplace

Uniform discretization

$$\Delta_{\mathrm{uni}} \mathbf{x}_i := \frac{1}{|\mathcal{N}_1(v_i)|} \sum_{v_j \in \mathcal{N}_1(v_i)} (\mathbf{x}_j - \mathbf{x}_i) \approx -2H\mathbf{n}$$

- Properties
 - depends only on connectivity
 - simple and efficient
 - bad approximation for irregular triangulations
 - can give non-zero *H* for planar meshes
 - tangential drift for mesh smoothing

tions Curvature flow

Barycentric Cells

Connect edge midpoints and triangle barycenters

- Simple to compute
- Area: 1/3 of triangle areas
- Slightly wrong for obtuse triangles

Mixed Cells

Connect edge midpoints and

- Circumcenters for non-obtuse triangles
- Midpoint of opposite edge for obtuse triangles
- Better approximation, more complex to compute.

"Cotan" Laplace

Piecewise linear functions

Reminder: Triangle barycentric coordinates

"Cotan" Laplace

Piecewise linear functions

$$f(\mathbf{u}) = f_i B_i(\mathbf{u}) + f_j B_j(\mathbf{u}) + f_k B_k(\mathbf{u})$$

- Gradient

$$\nabla f(\mathbf{u}) = f_i \nabla B_i(\mathbf{u}) + f_j \nabla B_j(\mathbf{u}) + f_k \nabla B_k(\mathbf{u})$$

Cotan Laplace

Piecewise linear functions

$$f(\mathbf{u}) = f_i B_i(\mathbf{u}) + f_j B_j(\mathbf{u}) + f_k B_k(\mathbf{u})$$

- Gradient

$$\nabla f(\mathbf{u}) = f_i \nabla B_i(\mathbf{u}) + f_j \nabla B_j(\mathbf{u}) + f_k \nabla B_k(\mathbf{u})$$

Cotan Laplace

Divergence Theorem

$$\int_{A_i} \operatorname{div} \mathbf{F}(\mathbf{u}) \mathrm{d}A = \int_{\partial A_i} \mathbf{F}(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \,\mathrm{d}s$$

- Applied to Laplacian

$$\int_{A_i} \Delta f(\mathbf{u}) \, \mathrm{d}A = \int_{A_i} \operatorname{div} \nabla f(\mathbf{u}) \, \mathrm{d}A = \int_{\partial A_i} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, \mathrm{d}s$$

Discrete Laplace-Beltrami

Cotangent discretization

$$\Delta_{\mathcal{S}} f(v) := \frac{1}{2A(v)} \sum_{v_i \in \mathcal{N}_1(v)} \left(\cot \alpha_i + \cot \beta_i \right) \left(f(v_i) - f(v) \right)$$

- Problems
 - weights can become negative (when?)
 - depends on triangulation
- Still the most widely used discretization

Mean curvature (absolute value)

$$H = \frac{1}{2} \left\| \Delta_{\mathcal{S}} \mathbf{x} \right\|$$

Gaussian curvature

$$K = (2\pi - \sum_{j} \theta_{j})/A$$

Principal curvatures

$$\kappa_1 = H + \sqrt{H^2 - K} \qquad \kappa_2 = H - \sqrt{H^2 - K}$$

PRINCIPAL CURVATURES

Principal Curvatures

Principal curvature directions

Lines of curvatures

Principal Curvature Directions

We can define curvatures at an edge e in terms of the angle $\beta(e)$ between curve segments*:

- The min/max curvature is 0, with principal curvature direction along *e*.
- The max/min curvature is equal to the dihedral angle ($\beta(e) = \angle n_1 n_2$), with principal curvature direction along $n_e xe$.

 n_2

* [Cohen-Steiner et al. '03]

Principal Curvature Directions

This allows us to define a 3x3 curvature tensor along the edge e as the symmetric matrix with eigenvalue $\beta(e)$ in the direction across e and eigenvalues of 0 in perpendicular directions:

$$\boldsymbol{\mathcal{C}}(p \in e) = \beta(e) \frac{1}{\left\| n_e \times e \right\|^2} (n_e \times e) (n_e \times e)^t$$

Principal Curvature Directions

This, in turn, allows us to define the curvature tensor around a vertex *v*, average over a neighborhood *B* around *v*:

$$C(v) = \frac{1}{|B|} \sum_{e} |B \cap e| \beta(e) \frac{1}{\|n_e \times e\|^2} (n_e \times e) (n_e \times e)^t$$

Principal Curvature Directions $\mathcal{C}(v) = \frac{1}{|B|} \sum_{e} |B \cap e| \beta(e) \frac{1}{\|n_e \times e\|^2} (n_e \times e) (n_e \times e)^t$

Computing the eigen-decomposition of the curvature tensor we get an estimate of:

- The normal: The eigenvector with smallest absolute eigenvalue.
- The principal directions and values: The other two eigenvectors and their associated eigenvalues.

Principal Curvature Directions $\mathcal{C}(v) = \frac{1}{|B|} \sum_{e} |B \cap e| \beta(e) \frac{1}{\|n_e \times e\|^2} (n_e \times e) (n_e \times e)^t$

Note:

When the two principal directions have the same principal curvature values, the principal directions are not well defined.

Principal Curvature Directions $\mathcal{C}(v) = \frac{1}{|B|} \sum_{e} |B \cap e| \beta(e) \frac{1}{\|n_e \times e\|^2} (n_e \times e) (n_e \times e)^t$

Note:

When the two principal directions have the same principal curvature values, the principal directions are not well defined.

Such points are called <u>umbilical</u> points.

Umbilic Points

Principal Direction Fields

Linear singularities

Topology of tensor fields. [Delmarcelle & Hesselink 94] [Tricoche 02]

What are the principal curvature lines?

Assuming that we are away from the umbilical points, we can define two vector fields:

- 1. v_{\min} : Aligns with the min. curvature
- 2. v_{max} : Aligns with the max. curvature

What are the principal curvature lines?

Assuming that we are away from the umbilical points, we can define two vector field

- 1. v_{\min} : Aligns with the min. curvature
- 2. v_{max} : Aligns with the max. curvature

Given a starting *p*, solve the diff. eq.:

 $\gamma_{\min/\max}'(t) = v_{\min/\max}(\gamma(t))$ s.t. $\gamma(0) = p$

How far should we integrate?

We should integrate the min/max curves until they are within a prescribed density:

- 1. Accuracy of the remesh
- 2. Local curvature

Q: If the user wants the remeshed surface to be within a distance of ε from the original surface, how far should the minimal/maximal curvature lines be from each other?

A: Consider the surface between two lines of minimal/maximal curvature:

A: Consider the surface between two lines of minimal/maximal curvature:

The curve between them will follow the maximal/minimal curvature direction.

A: Consider the surface between two lines of minimal/maximal curvature:

The curve between them will follow the maximal/minimal curvature direction.

The curve will be, roughly, a circular arc with radius equal to one over the maximal/minimal curvature.

Looking at this in cross section, we choose the distance d between the curves so that the distance to the surface is below a threshold ε .

Looking at this in cross section, we choose the distance d between the curves so that the distance to the surface is below a threshold ε .

Denoting the distance by ε we get: $\left(\frac{d}{2}\right)^2 + \left(\frac{1}{|\kappa|} - \varepsilon\right)^2 = \left(\frac{1}{|\kappa|}\right)^2$

Looking at this in cross section, we choose the distance d between the curves so that the distance to the surface is below a threshold ε .

Denoting the distance by ε we get: $\left(\frac{d}{2}\right)^2 + \left(\frac{1}{|\kappa|} - \varepsilon\right)^2 = \left(\frac{1}{|\kappa|}\right)^2$

$$d = 2\sqrt{\varepsilon \left(\frac{2}{|\kappa|} - \varepsilon\right)}$$

Literature

Taubin: **A signal processing approach to fair surface design**, SIGGRAPH 1996.

- Desbrun et al: Implicit Fairing of Irregular Meshes using
 Diffusion and Curvature Flow, SIGGRAPH 1999.
- Meyer et al: *Discrete Differential-Geometry Operators for Triangulated 2-Manifolds*, VisMath 2002.
- Wardetzky, Mathur, Kaelberer, Grinspun: *Discrete Laplace Operators: No free lunch,* SGP 2007

 Alexa, Wardetzky: Discrete Laplacians on General Polygonal Meshes, SIGGRAPH 2011